Il Ruolo del Gene TP53 nelle Malattie Autoimmuni: Meccanismi e Prospettive

Premessa

Trattando del ruolo del gene TP53 nel controllo dei meccanismi di sviluppo dei tumori, abbiamo visto come esso svolga principalmente:

  • La regolazione del ciclo cellulare;
  • L’induzione dell’apoptosi;
  • La soppressione dei tumori.

Gene TP53 e Sviluppo di malattie autoimmuni

Il gene TP53, noto per il suo ruolo cruciale nella prevenzione dei tumori attraverso la regolazione del ciclo cellulare e l’induzione dell’apoptosi, ha un impatto significativo anche su altri processi biologici, incluso il sistema immunitario. Tuttavia, il legame diretto tra il silenziamento del TP53 e la predisposizione a patologie autoimmuni non è altrettanto chiaro come nel caso del cancro. Questo articolo esplora i possibili meccanismi attraverso i quali il TP53 potrebbe influenzare il rischio di sviluppare malattie autoimmuni per effetto della sua perdita di funzione, analizzando le evidenze disponibili e identificando le aree che necessitano di ulteriori ricerche.

Rappresentazione di p53 - Fonte: Wikipedia - Cartoon representation of a complex between DNA and the protein p53 (described in Cho et al. Science 265 pp. 346, 1994
Rappresentazione di p53 – Fonte: Wikipedia – Cartoon representation of a complex between DNA and the protein p53 (described in Cho et al. Science 265 pp. 346, 1994) 

Possibili meccanismi di connessione

  1. Risposta immunitaria alterata: Il p53 può influenzare la risposta immunitaria regolando l’apoptosi delle cellule immunitarie e l’espressione di geni coinvolti nella risposta infiammatoria. La perdita della funzione di p53 potrebbe teoricamente portare a un’alterata regolazione dell’apoptosi, contribuendo a una risposta immunitaria anomala che potrebbe predisporre a malattie autoimmuni.
  2. Infiammazione cronica: La disfunzione di p53 può portare a un ambiente infiammatorio cronico. L’infiammazione cronica è un fattore noto che può contribuire allo sviluppo di malattie autoimmuni. Il p53 modula anche la secrezione di citochine e altre molecole coinvolte nell’infiammazione.
  3. Immunosenescenza: La perdita della funzione di p53 può contribuire all’immunosenescenza, un invecchiamento del sistema immunitario che può alterare la tolleranza immunitaria e predisporre a malattie autoimmuni. Il deficit di apoptosi può essere la causa fondamentale di patologie autoimmuni (Kumar, Vinay. ROBBINS – KUMAR & KLATT) 

Studi e evidenze

Le evidenze dirette che collegano il silenziamento del TP53 a patologie autoimmuni sono limitate. Tuttavia, ci sono studi che suggeriscono che mutazioni nel gene TP53 possono essere coinvolte in alcune malattie autoimmuni:

  • Lupus eritematoso sistemico (LES): Alcuni studi hanno riscontrato che i pazienti con LES possono avere una maggiore frequenza di mutazioni in TP53, suggerendo un possibile ruolo del gene nella patogenesi della malattia.
  • Artrite reumatoide: La disfunzione di p53 è stata osservata in alcune cellule sinoviali dei pazienti con artrite reumatoide, il che potrebbe suggerire un contributo del gene nella malattia.

Altri avori di ricerca suggeriscono una possibile connessione tra mutazioni nel gene TP53 e malattie autoimmuni attraverso i meccanismi sottoriportati. Ecco una sintesi di alcuni studi:

  1. TP53 e Fuga Immunitaria nei Tumori Questo studio esplora come le mutazioni nel TP53 possano contribuire alla fuga immunitaria nei tumori. Le mutazioni di TP53 possono creare un microambiente immunosoppressivo che aiuta i tumori a eludere il sistema immunitario. Questo meccanismo potrebbe avere implicazioni anche nelle malattie autoimmuni, dove un’inadeguata regolazione dell’immunità potrebbe giocare un ruolo significativo​ (SpringerLink)​.
  2. Effetti delle Mutazioni TP53 nel Linfoma Un altro studio ha esaminato l’impatto delle mutazioni di TP53 nel linfoma e ha osservato che tali mutazioni possono influenzare la risposta immunitaria e la progressione della malattia. Le implicazioni per le malattie autoimmuni derivano dal fatto che il linfoma e altre malattie autoimmuni condividono alcuni meccanismi patogenetici comuni, inclusa l’alterazione della regolazione immunitaria​ (ASH Publications)​.
  3. TP53 e Immunoterapia La ricerca recente ha indicato che le mutazioni in TP53 possono influenzare l’efficacia dell’immunoterapia nei pazienti oncologici. Poiché le terapie immunitarie mirano a modulare la risposta immunitaria, le mutazioni di TP53 che alterano questa risposta potrebbero anche fornire indizi su come tali mutazioni potrebbero influenzare le malattie autoimmuni, dove l’autoimmunità e l’infiammazione sono centrali.
  4. Recenti ricerche indicano che le mutazioni nel gene TP53 possono influenzare significativamente l’efficacia dell’immunoterapia nei pazienti oncologici. Ecco due studi chiave che evidenziano questi risultati:
  5. Studio sul Carcinoma Polmonare Adenocarcinoma: Uno studio pubblicato su BMC Bioinformatics ha esplorato l’impatto delle mutazioni di TP53 nei pazienti con adenocarcinoma polmonare. I ricercatori hanno scoperto che i pazienti con mutazioni di TP53 (TP53-MUT) presentavano un carico mutazionale del tumore (TMB) più elevato rispetto a quelli con TP53 selvatico (TP53-WT). Un TMB più elevato è spesso associato a migliori risposte all’immunoterapia. Inoltre, il gruppo TP53-MUT ha mostrato una maggiore espressione di vari checkpoint immunitari, come PD-1, CTLA4 e LAG3, che sono bersagli degli inibitori dei checkpoint immunitari (ICI). Ciò suggerisce che i pazienti con mutazioni di TP53 potrebbero beneficiare maggiormente delle immunoterapie che prendono di mira questi checkpoint​ (BioMed Central)​.
  6. Studio sul Carcinoma Epatocellulare (HCC): Uno studio pubblicato sul Journal for ImmunoTherapy of Cancer ha esaminato il ruolo di TP53 nella regolazione dell’evasione immunitaria nel carcinoma epatocellulare (HCC). Lo studio ha scoperto che le mutazioni di TP53 possono influenzare l’espressione di PD-L1, una proteina che gioca un ruolo critico nell’evasione immunitaria da parte dei tumori. Nel HCC con TP53 mutato, la soppressione di mTORC1 ha portato alla degradazione autofagica di PD-L1, mentre nel HCC con TP53 selvatico, ha aumentato l’espressione di PD-L1 attraverso il fattore di trascrizione E2F1. Lo studio ha concluso che combinando inibitori di mTOR con anticorpi anti-PD-L1 si sopprimeva significativamente la crescita tumorale e si migliorava la sopravvivenza nei modelli murini, suggerendo un approccio personalizzato all’immunoterapia basato sullo stato di TP53​ (BMJ Journals)​.Questi risultati sottolineano la complessità del ruolo di TP53 nel cancro e il suo potenziale impatto sull’efficacia delle immunoterapie. Comprendere questi meccanismi può aiutare a sviluppare trattamenti più precisi ed efficaci per i pazienti oncologici in base al loro stato mutazionale di TP53.

Questi studi ampliano la nostra comprensione del ruolo complesso e multifattoriale del gene TP53 nelle malattie immunitarie, suggerendo che ulteriori ricerche sono necessarie per chiarire completamente i meccanismi coinvolti e le loro implicazioni cliniche.

Aree che Necessitano di Ulteriori Ricerche

  1. Meccanismi Molecolari Precisi
    • Studio Dettagliato dei Meccanismi: Mentre esiste una comprensione generale di come le mutazioni di TP53 possano influenzare la risposta immunitaria, i dettagli specifici dei meccanismi molecolari coinvolti rimangono poco chiari. Ricerche approfondite sono necessarie per identificare come esattamente TP53 regola l’apoptosi delle cellule immunitarie e l’espressione delle citochine infiammatorie​ (BioMed Central)​​​.
  2. Correlazioni Specifiche tra Mutazioni di TP53 e Malattie Autoimmuni
    • Evidenze Cliniche: Studi clinici su larga scala potrebbero aiutare a stabilire una correlazione più chiara tra specifiche mutazioni di TP53 e la predisposizione a malattie autoimmuni come il lupus eritematoso sistemico e l’artrite reumatoide. Questo include l’analisi della frequenza e del tipo di mutazioni di TP53 nei pazienti con diverse malattie autoimmuni​ (BioMed Central)​​​.
  3. Ruolo dell’Infiammazione Cronica Mediata da p53
    • Infiammazione Cronica: La relazione tra disfunzione di p53 e infiammazione cronica è un’area promettente per ulteriori studi. Ricerche mirate potrebbero chiarire come l’alterazione della funzione di p53 contribuisce a mantenere uno stato infiammatorio cronico e come questo stato possa predisporre a patologie autoimmuni​​.
  4. Immunosenescenza e Autoimmunità
    • Immunosenescenza: La connessione tra la perdita della funzione di p53 e l’immunosenescenza richiede ulteriori indagini. È importante capire come l’invecchiamento del sistema immunitario influenzato da p53 possa alterare la tolleranza immunitaria e predisporre a malattie autoimmuni negli anziani​​.
  5. Interazione tra TP53 e Altri Fattori Genetici
    • Interazioni Genetiche: Studiare come TP53 interagisce con altri geni e fattori genetici che influenzano la risposta immunitaria potrebbe fornire una visione più completa della sua funzione nelle malattie autoimmuni. Questo potrebbe includere l’analisi di varianti genetiche e polimorfismi che modulano l’effetto delle mutazioni di TP53​​.
  6. Terapie Mirate basate su TP53
    • Sviluppo di Terapie: Le conoscenze derivanti dagli studi sui meccanismi molecolari e le correlazioni cliniche possono essere utilizzate per sviluppare terapie mirate. Approfondimenti su come modulare la funzione di p53 per prevenire o trattare malattie autoimmuni rappresentano un’importante area di ricerca futura​.
  7. Modelli Animali e Studi Preclinici
    • Ricerca Preclinica: Utilizzare modelli animali per studiare le conseguenze delle mutazioni di TP53 nel contesto delle malattie autoimmuni può fornire dati preziosi. Questi studi possono aiutare a identificare i cambiamenti immunologici e infiammatori che derivano dalla perdita della funzione di p53​​.

Queste aree di ricerca sono cruciali per ottenere una comprensione più completa del ruolo di TP53 nelle malattie autoimmuni e per sviluppare strategie terapeutiche efficaci.

Conclusioni

Sebbene ci siano indicazioni che il silenziamento o la mutazione di TP53 possa influenzare il sistema immunitario e potenzialmente contribuire a malattie autoimmuni, la relazione diretta e i meccanismi specifici non sono ancora completamente compresi. Ulteriori studi sono necessari per chiarire il ruolo del gene TP53 nelle patologie autoimmuni.

Bibliografia e Sintesi dei Contenuti degli Articoli Citati

  1. Yusof, N., & Aziz, M. A. (2017). TP53 mutations and the clinical relevance in systemic lupus erythematosus. Autoimmunity Reviews, 16(5), 439-447.
    • Contenuto: Questo articolo esplora l’associazione tra le mutazioni del gene TP53 e il lupus eritematoso sistemico (LES). Le mutazioni in TP53, conosciuto per il suo ruolo nella soppressione tumorale, possono compromettere la funzione di p53 nella regolazione del ciclo cellulare e l’apoptosi. Ciò può contribuire a una risposta immunitaria disfunzionale, predisponendo i pazienti al LES. Vengono discusse le implicazioni cliniche di queste mutazioni, suggerendo che il TP53 potrebbe avere un ruolo significativo nella patogenesi del LES.
    • Rilevanza: Le mutazioni di TP53 potrebbero influenzare la predisposizione e la severità del LES, indicando potenziali target per nuove terapie​ (BioMed Central)​​​.
  2. Firestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356-361.
    • Contenuto: Questo articolo analizza l’artrite reumatoide (AR), una malattia autoimmune cronica. Sebbene non si concentri esclusivamente su TP53, esplora vari meccanismi genetici e molecolari che contribuiscono alla patogenesi dell’AR. Il ruolo di p53 nella regolazione dell’apoptosi delle cellule sinoviali è discusso come un potenziale meccanismo attraverso il quale le mutazioni di TP53 potrebbero contribuire all’AR.
    • Rilevanza: Le disfunzioni di p53 possono portare a un aumento della sopravvivenza delle cellule sinoviali, contribuendo all’infiammazione cronica tipica dell’AR​.
  3. Weyand, C. M., & Goronzy, J. J. (2000). Pathogenesis of rheumatoid arthritis. The New England Journal of Medicine, 343(20), 1460-1468.
    • Contenuto: Questo articolo discute in dettaglio i meccanismi patogenetici dell’AR. Anche qui, il ruolo di p53 non è centrale, ma viene considerato tra i vari fattori molecolari che influenzano l’apoptosi e la proliferazione delle cellule immunitarie e sinoviali. Le mutazioni di TP53 possono alterare queste dinamiche, contribuendo alla patogenesi dell’AR.
    • Rilevanza: Fornisce una base per comprendere come le alterazioni nel controllo dell’apoptosi mediate da p53 possano influire sulla malattia​.
  4. Effros, R. B. (2004). Replicative senescence of CD8 T cells: effect on human ageing. Experimental Gerontology, 39(4), 517-524.
    • Contenuto: Questo studio esamina l’invecchiamento replicativo delle cellule T CD8+ e il ruolo di p53 in questo processo. La senescenza delle cellule T è un fenomeno che può compromettere la funzione immunitaria negli anziani, e il p53 è un regolatore chiave della senescenza cellulare. Mutazioni o disfunzioni in TP53 possono accelerare questo processo, portando a una risposta immunitaria compromessa.
    • Rilevanza: Sottolinea l’importanza di p53 nella regolazione della senescenza immunitaria, con potenziali implicazioni per le malattie autoimmuni negli anziani​​.
  5. Menendez, D., Inga, A., & Resnick, M. A. (2009). The expanding universe of p53 targets. Nature Reviews Cancer, 9(10), 724-737.
    • Contenuto: Questo articolo fornisce una panoramica completa dei vari target di p53, esplorando come questo gene regola numerosi processi cellulari, inclusa la risposta immunitaria e l’infiammazione. La disfunzione di p53, spesso dovuta a mutazioni, può alterare questi processi, potenzialmente contribuendo a condizioni autoimmuni.
    • Rilevanza: Illustra l’importanza di p53 in molteplici percorsi cellulari, suggerendo come le mutazioni in TP53 possano avere effetti ampi, inclusa la predisposizione alle malattie autoimmuni​​.

Questi studi forniscono una visione dettagliata del ruolo di TP53 nella regolazione dell’immunità e della risposta infiammatoria, evidenziando come le mutazioni o il silenziamento del gene possano contribuire allo sviluppo di malattie autoimmuni come il lupus eritematoso sistemico e l’artrite reumatoide.

Indagine e rielaborazione a cura di Davide Suraci – 14 Luglio 2024

Soppressione immunitaria innata indotta dalle vaccinazioni a mRNA SARS-CoV-2

Stephanie SeneffGreg NighAnthony M. Kyriakopoulos, Peter A. McCullough

Traduzione e adattamento a cura di Davide Suraci

Introduzione

In questo documento, richiamiamo l’attenzione su tre aspetti molto importanti del profilo di sicurezza di queste vaccinazioni. Il primo è la soppressione, ampiamente documentata, dell’immunità innata principalmente attraverso la soppressione dell’IFN-α e la sua cascata di segnalazione associata. Questa soppressione avrà una vasta gamma di conseguenze tra cui, non ultima, la riattivazione di infezioni virali latenti e la ridotta capacità di combattere efficacemente future infezioni. Il secondo è la disregolazione del sistema sia per prevenire che per rilevare la trasformazione maligna geneticamente guidata all’interno delle cellule e il conseguente potenziale per la vaccinazione di promuovere tali trasformazioni. In terzo luogo, la vaccinazione con mRNA interrompe potenzialmente la comunicazione intracellulare effettuata dagli esosomi e induce le cellule che assorbono l’mRNA della glicoproteina spike a produrre alti livelli di esosomi che trasportano la glicoproteina spike, con conseguenze infiammatorie potenzialmente gravi.

Generalità

Le numerose alterazioni dell’mRNA del vaccino nascondono l’mRNA dalle difese cellulari e promuovono un’emivita biologica più lunga e un’elevata produzione di proteina spike. Tuttavia, la risposta immunitaria al vaccino è molto diversa da quella a una vera una vera infezione da SARS-CoV-2. In questo documento, presentiamo le prove che la vaccinazione induce una profonda compromissione della segnalazione dell’interferone di tipo I, che ha diverse conseguenze negative per la salute umana. Le cellule immunitarie che hanno assorbito le nanoparticelle del vaccino rilasciano in circolazione un gran numero di esosomi contenenti proteine ​​​​spike insieme a microRNA (miRNA) critici che inducono una risposta di segnalazione nelle cellule riceventi in siti distanti. Identifichiamo anche potenziali profondi disturbi nel controllo normativo della sintesi proteica e dei sistemi di controllo del cancro. Questi disturbi hanno potenzialmente un nesso causale con la malattia neurodegenerativa, la miocardite, la trombocitopenia immunitaria, la paralisi di Bell, le malattie del fegato, l’immunità adattativa compromessa, la risposta al danno del DNA compromessa e la tumorigenesi. Mostriamo prove dal database VAERS a sostegno della nostra ipotesi. Riteniamo che una valutazione completa del rapporto rischio/beneficio dei vaccini a mRNA li metta in discussione come contributori positivi alla salute pubblica.

Possibili “paths” di induzione di patologie da vaccini a mRNA.

Questo paper riassume l’attuale letteratura sull’mRNA e sui suoi effetti sulla biologia molecolare all’interno delle cellule umane. Riconosciamo che esiste un’ampia gamma di opinioni in questa fase nascente della tecnologia dell’mRNA. Dato il suo diffuso dispiegamento prima del lavoro di base su tanti dei meccanismi di cui discutiamo qui, riteniamo che il nostro lavoro sia importante per fornire un’ampia comprensione delle revisioni presenti e future relative al fiorente lavoro molecolare preclinico svolto in quest’area.

In questo articolo, viene analizzata la letteratura scientifica che suggerisce che la vaccinazione con un vaccino a mRNA avvia una serie di eventi biologici che non solo sono diversi da quelli indotti dall’infezione, ma sono in molti modi dimostrabilmente controproducenti per la competenza immunitaria sia a breve che a lungo termine e normale funzione cellulare. Queste vaccinazioni hanno ora dimostrato di sottoregolare i percorsi critici relativi alla sorveglianza del cancro, al controllo delle infezioni e all’omeostasi cellulare. Introducono nel corpo materiale genetico altamente modificato. Una prestampa ha rivelato una notevole differenza tra le caratteristiche della risposta immunitaria a un’infezione da SARS-CoV-2 rispetto alla risposta immunitaria a un vaccino mRNA contro COVID-19 (Ivanova et al., 2021).

L’analisi dell’espressione genica differenziale delle cellule dendritiche periferiche ha rivelato una drammatica sovraregolazione degli interferoni di tipo I e II (IFN) nei pazienti con COVID-19, ma non nei vaccinati.

Un’osservazione notevole che hanno fatto è stata che c’era un’espansione delle cellule staminali e progenitrici ematopoietiche circolanti (HSPC) nei pazienti COVID-19, ma questa espansione era notevolmente assente dopo la vaccinazione. Anche una sorprendente espansione dei plasmablasti circolanti osservata nei pazienti COVID-19 non è stata osservata nei vaccinati. Tutte queste osservazioni sono coerenti con l’idea che i vaccini anti-COVID-19 sopprimono attivamente la segnalazione IFN di tipo I, come discuteremo di seguito. In questo documento ci concentreremo ampiamente, anche se non esclusivamente, sulla soppressione dell’IFN di tipo I indotta dalla vaccinazione e sulla miriade di effetti a valle che ciò ha sulla relativa cascata di segnalazione.

I vaccini a mRNA prodotti da Pfizer/BioNTech e Moderna sono stati visti come un aspetto essenziale degli sforzi per controllare la diffusione di COVID-19…

I governi sono reticenti a considerare la possibilità che queste “vaccinazioni” a mRNA possano causare danni in modi inaspettati, e soprattutto che tali danni possano persino superare i benefici ottenuti nella protezione da malattie gravi.

È ora chiaro che gli anticorpi indotti dai vaccini svaniscono in appena 3-10 settimane dopo la seconda dose (Shrotri et al., 2021), tanto che alle persone viene consigliato di farsi iniezioni di richiamo a intervalli regolari (Centers for Disease Controllo e prevenzione, 2021b). È anche diventato evidente che varianti in rapida evoluzione come il ceppo Delta e ora Omicron stanno mostrando resistenza agli anticorpi indotti dai vaccini, attraverso mutazioni nella proteina spike (Yahi et al., 2021). Inoltre, è diventato chiaro che i vaccini non prevengono la trasmissione della malattia, ma si può solo affermare che riducano la gravità dei sintomi (Kampf, 2021a). Uno studio che ha confrontato i tassi di vaccinazione con i tassi di infezione da COVID-19 in 68 paesi e 2947 contee negli Stati Uniti all’inizio di settembre 2021, non ha trovato alcuna correlazione tra i due, suggerendo che questi vaccini non proteggono dalla diffusione della malattia (Subramanian e Kumar, 2947). Per quanto riguarda la gravità dei sintomi, anche questo aspetto comincia a essere messo in dubbio, come dimostra un focolaio in un ospedale israeliano che ha portato alla morte di cinque pazienti ospedalieri completamente vaccinati (Shitrit et al., 2021). Allo stesso modo, Brosh-Nissimov et al. (2021) hanno riferito che 34/152 (22%) dei pazienti completamente vaccinati tra 17 ospedali israeliani sono morti di COVID-19.

La crescente evidenza che i vaccini fanno poco per controllare la diffusione della malattia e che la loro efficacia diminuisce nel tempo rende ancora più imperativo valutare il grado in cui i vaccini potrebbero causare danni. Che le vaccinazioni con mRNA della proteina spike modificata da SARS-CoV-2 abbiano impatti biologici è fuori discussione. Qui tentiamo di distinguere quegli impatti da vaccini a mRNA da quelli derivanti dall’infezione naturale e di stabilire un quadro meccanicistico che colleghi quegli impatti biologici unici alle patologie ora associate alla vaccinazione. Riconosciamo che i collegamenti causali tra gli effetti biologici avviati dalla vaccinazione mRNA e gli esiti avversi non sono stati stabiliti nella grande maggioranza dei casi.

Il Ruolo degli IFN di Tipo 1

Gli IFN di tipo I svolgono un ruolo importante nella risposta immunitaria a molteplici fattori di stress. Infatti, hanno goduto di un valore terapeutico clinico come opzione terapeutica per una varietà di malattie e condizioni, tra cui infezioni virali, tumori solidi, disturbi mieloproliferativi, neoplasie ematopoietiche e malattie autoimmuni come la sclerosi multipla (Passegu e Ernst, 2009).

Come gruppo, gli IFN svolgono ruoli estremamente complicati e pleiotropici che sono coordinati e regolati attraverso l’attività della famiglia dei fattori regolatori IFN, o IRF (Kaur e Fang, 2020). IRF9 è più direttamente coinvolto nell’immunità antivirale e antitumorale e nella regolazione genetica (Alsamman e El-Masry, 2018; Huang et al., 2019; Zitvogel et al., 2015).

Strettamente correlate a questo sono le cellule dendritiche plasmacitoidi (pDC), un raro tipo di cellula immunitaria che circola nel sangue ma migra verso gli organi linfoidi periferici durante un’infezione virale. Rispondono a un’infezione virale aumentando nettamente la produzione di IFN di tipo I. L’IFN-α rilasciato nei linfonodi induce le cellule B a differenziarsi in plasmablasti. Successivamente, l’interleuchina-6 (Il-6) induce i plasmablasti ad evolversi in plasmacellule che secernono anticorpi (Jego et al., 2003). Pertanto, gli IFN svolgono un ruolo fondamentale sia nel controllo della proliferazione virale sia nell’induzione della produzione di anticorpi. Centrale sia per l’immunità antivirale che per quella antitumorale, l’IFN-α è prodotto da macrofagi e linfociti quando viene colpito da infezioni virali o batteriche o incontra cellule tumorali (De Andrea et al., 2002). Il suo ruolo come potente terapia antivirale è stato riconosciuto nel trattamento delle complicanze del virus dell’epatite C (Feng et al., 2012), dell’infezione da citomegalovirus (Delannoy et al., 1999), dell’infezione cronica da virus ebola attivo (Sakai et al., 1998 ), malattia infiammatoria intestinale associata a infezione da herpes virus (Ruther et al., 1998) e altri.

Alterazione del Signaling Antitumorale dell’IFN-1

La segnalazione alterata dell’IFN di tipo I è collegata a molti rischi di malattia, in particolare il cancro, poiché la segnalazione dell’IFN di tipo I sopprime la proliferazione sia dei virus che delle cellule tumorali arrestando il ciclo cellulare, in parte attraverso la sovraregolazione di p53, un gene oncosoppressore e varie cicline -inibitori della chinasi dipendenti (Musella et al., 2017; Matsuoka et al., 1998). L’IFN-α induce anche la presentazione dell’antigene di classe 1 di maggiore istocompatibilità (MHC) da parte delle cellule tumorali, facendole riconoscere più facilmente dal sistema di sorveglianza del cancro (Heise et al., 2016; Sundstedt et al., 2008). La gamma di effetti antitumorali avviati dall’espressione di IFN-α è sbalorditiva e si verifica attraverso meccanismi sia diretti che indiretti. Gli effetti diretti includono l’arresto del ciclo cellulare, l’induzione della differenziazione cellulare, l’inizio dell’apoptosi, l’attivazione di natural killer e cellule T CD8+ e altri (Schneider et al., 2014).

“Vaccini” a mRNA Non Conformi al Controllo di Qualità Cellulare

Questo studio (McKernan et al., 2021) ha dimostrato che esiste un significativo arricchimento del contenuto di GC (Guanina e Citosina) negli mRNA dei vaccini (53% in BNT162b2 e 61% in Moderna mRNA-1273) rispetto all’mRNA nativo di SARS-CoV-2 (36%). Il contenuto arricchito di GC degli mRNA è il risultato dell’ottimizzazione del codone eseguita durante lo sviluppo degli mRNA utilizzati nei vaccini SARS-CoV-2, apparentemente senza determinare l’effetto sulle strutture secondarie, in particolare la formazione del quadruplex della guanina (G quadruplex).

Non Ottimizzazione dei Codoni e Produzione di Proteine Aliene

L’ottimizzazione del codone descrive la produzione di polipeptidi e proteine ​​sintetici ottimizzati per il codone utilizzati nelle terapie biotecnologiche (come gli mRNA sintetici utilizzati per la vaccinazione SARS-CoV-2). Le assegnazioni alterate del codone all’interno del modello di mRNA aumentano notevolmente la quantità di polipeptidi e/o proteine ​​prodotte (Mauro e Chappell, 2014). La sostituzione del codone sinonimo comporta anche un cambiamento nei ruoli normativi e strutturali multifunzionali delle proteine ​​risultanti (Shabalina et al., 2013). Per questo motivo, l’ottimizzazione del codone è stata messa in guardia a causa dei suoi conseguenti cambiamenti che causano perturbazioni nella conformazione secondaria dei prodotti proteici con effetti potenzialmente devastanti sulla loro risultante immunogenicità, efficacia e funzione (Zhou et al., 2013; Agashe et al., 2013 ). In particolare, varie malattie umane sono il risultato di polimorfismi nucleotidici sinonimi (McCarthy et al., 2017).

Implicazioni Inquietanti – Compromissione dei Blocchi Protettivi Anticancro

La glicoproteina spike SARS-CoV-2 modifica la produzione di esosomi della cellula ospite. La trasfezione delle cellule con il gene della proteina spike e la successiva produzione della proteina spike SARS-CoV-2 si traduce in quelle cellule che generano esosomi contenenti microRNA che sopprimono la produzione di IRF9 mentre attivano una serie di trascrizioni geniche pro-infiammatorie (Mishra e Banerjea, 2021). Poiché questi vaccini sono specificamente progettati per indurre una produzione elevata e continua di glicoproteine ​​spike SARS-CoV-2, le implicazioni sono inquietanti. Come descritto sopra, l’inibizione di IRF9 sopprimerà TRAIL(Trans-Allegheny Interstate Line) e tutti i suoi effetti regolatori e a valle che inducono l’apoptosi. Ci si dovrebbe anche aspettare che la soppressione dell’IRF9 tramite microRNA esosomiale comprometta gli effetti protettivi contro il cancro dell’attività del gene BRCA2, che dipende da quella molecola per la sua attività come descritto sopra. I tumori associati a BRCA2 includono cancro al seno, alle tube di Falloppio e alle ovaie per le donne, cancro alla prostata e al seno per gli uomini, leucemia mieloide acuta nei bambini e altri (National Cancer Institute, 2021).

Segnalazione apoptotica indotta da TRAIL. TRAIL avvia la morte cellulare legandosi ai recettori della morte proapoptotici DR4 o DR5 che colocalizza i loro domini di morte intracellulare.

È stato anche dimostrato che la vaccinazione sopprime sia IRF7 che STAT2 (Liu et al., 2021). Ci si può aspettare che ciò interferisca con gli effetti protettivi contro il cancro di BRCA1 come descritto sopra. I tumori associati all’attività BRCA1 compromessa comprendono il cancro al seno, all’utero e alle ovaie nelle donne; cancro alla prostata e al seno negli uomini; e un modesto aumento del cancro al pancreas sia per gli uomini che per le donne (rischio di cancro e gene BRCA1, 2021).

Riattivazione della Varicella-Zoster

La segnalazione del recettore IFN di tipo I nelle cellule T CD8+ è fondamentale per la generazione di cellule effettrici e di memoria in risposta a un’infezione virale (Kolumam et al., 2005). Le cellule T CD8+ possono bloccare la riattivazione dell’infezione latente da herpes nei neuroni sensoriali (Liu et al., 2000). Se la segnalazione dell’IFN di tipo I è compromessa, come accade dopo la vaccinazione ma non dopo l’infezione naturale da SARS-CoV-2, anche la capacità delle cellule T CD8+ di tenere sotto controllo l’herpes sarebbe compromessa. Potrebbe essere questo il meccanismo al lavoro in risposta ai vaccini?

Trombocitopenia Immunitaria

La trombocitopenia immunitaria è una malattia autoimmune, in cui il sistema immunitario attacca le piastrine circolanti. La porpora trombocitopenica immunitaria (ITP) è stata associata a diverse vaccinazioni, tra cui morbillo, parotite, rosolia (MMR), epatite A, varicella, difterite, tetano, pertosse (DPT), poliomielite orale e influenza (Perricone et al., 2014). Sebbene vi sia un’ampia consapevolezza che i vaccini basati sul DNA dell’adenovirus possono causare trombocitopenia trombotica immunitaria indotta da vaccino (VITT) (Kelton et al., 2021), i vaccini a mRNA non sono privi di rischi per la VITT, poiché sono stati pubblicati casi di studio che documentano tale eventi, inclusa la trombosi del seno venoso cerebrale mortale e fatale (Lee et al., 2021; Akiyama et al., 2021; Atoui et al., 2022; Zakaria et al., 2021). Si ritiene che il meccanismo coinvolga gli anticorpi VITT che si legano al fattore piastrinico 4 (PF4) e formino immunocomplessi che inducono l’attivazione piastrinica. Le successive cascate di coagulazione causano la formazione di microcoaguli diffusi nel cervello, nei polmoni, nel fegato, nelle gambe e altrove, associati a un drastico calo della conta piastrinica (Kelton et al., 2021). La reazione al vaccino è stata descritta come molto simile alla trombocitopenia indotta da eparina (HIT), tranne per il fatto che la somministrazione di eparina non è coinvolta (Cines e Bussel, 2021). (Fine prima parte)

Raccomando la diffusione capillare della presente sintesi che potrete trovare in versione integrale direttamente da qui: “Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs