La Miosina: Una Protagonista Controversa nei Processi Autoimmuni..

❤️Questo studio, “T cells specific for α-myosin drive immunotherapy-related myocarditis” –  (2022 Nov;611(7937):818-826.doi: 10.1038/s41586-022-05432-3.Epub 2022) descrive una serie di scoperte relative alla miocardite associata agli inibitori dei checkpoint immunitari (ICI-MC) e alla sua possibile causa legata alla presenza di cellule T miocardiche e alla reattività verso la proteina cardiaca specifica chiamata α-miosina. Viene evidenziato il ruolo delle cellule T specifiche per l’alfa-miosina nella miocardite autoimmune, portando alla comprensione di come la miosina possa scatenare gravi condizioni patologiche come la miocardite fulminante.

☣️ La “miocardite fulminante” citata nello studio è una forma grave e rapida di infiammazione del muscolo cardiaco, che può manifestarsi con insufficienza cardiaca acuta e rapido deterioramento delle funzioni cardiache.

☣️Inizialmente, viene sottolineata l’importanza delle reazioni avverse correlate all’immunità, in particolare la miocardite, come sfida nell’uso degli inibitori dei checkpoint immunitari (ICI-MC) nella terapia anticancro. Tuttavia, secondo questo studio, la causa precisa della miocardite associata agli ICI non è ancora completamente compresa.

☣️ Successivamente, il testo evidenzia che nei topi privi di certe molecole immunitarie (Pdcd1 e Ctla4), si riscontrano caratteristiche simili alla miocardite associata agli ICI, inclusa l’infiltrazione di cellule T nel tessuto cardiaco. Attraverso l’analisi del RNA a singola cellula e dei recettori delle cellule T, si identificano le cellule CD8+ come la popolazione cellulare dominante coinvolta nella miocardite.

❤️ Inoltre, si scopre che il trattamento con anticorpi che eliminano le cellule CD8 migliora la sopravvivenza dei topi affetti da questa condizione, e che il trasferimento di cellule immunitarie da topi con miocardite induce la stessa condizione nei riceventi, richiedendo la presenza delle cellule CD8+.

❓✅ Infine, si evidenzia che la α-miosina, una proteina specifica del cuore, è stata identificata come l’antigene responsabile dell’attivazione immunitaria nelle miocarditi gravi. Le cellule T nel sangue periferico dei pazienti affetti da miocardite associata agli ICI possono essere espandibili mediante peptidi di α-miosina. Queste scoperte suggeriscono che la α-miosina potrebbe essere un autoantigene clinicamente rilevante nella miocardite associata agli ICI.

❤️ In sintesi, questo studio sottolinea l’importanza delle cellule T CD8+ e della reattività verso la α-miosina nella patogenesi della miocardite associata agli ICI, offrendo nuove intuizioni sulla tossicità di questi farmaci immunoterapici.

❓☣️ Gli anticorpi, prodotti dai linfociti B in risposta alla miosina, possono neutralizzarla o segnalare la sua distruzione da parte di altre cellule immunitarie. Questi anticorpi possono essere utilizzati come marker di condizioni autoimmuni come la miosite e possono essere rilevati anche nella nefropatia da miosina emocircolante.

❓✅ Questi ultimi potrebbero essere usati come markers da ricercare nelle autopsie di soggetti colpiti da “malore improvviso”?

Fonte: “T cells specific for α-myosin drive immunotherapy-related myocarditis” https://pubmed.ncbi.nlm.nih.gov/36385524/ Margaret L Axelrod 1Wouter C Meijers 1 2 3Elles M Screever 1 2 3Juan Qin 1 4Mary Grace Carroll 1Xiaopeng Sun 1Elie Tannous 1Yueli Zhang 1Ayaka Sugiura 1Brandie C Taylor 1Ann Hanna 1Shaoyi Zhang 4Kaushik Amancherla 1Warren Tai 1 5Jordan J Wright 1Spencer C Wei 6Susan R Opalenik 1Abigail L Toren 1Jeffrey C Rathmell 7 8 9P Brent Ferrell 1Elizabeth J Phillips 1 7 10 11 12Simon Mallal 1 10 13Douglas B Johnson 1 8James P Allison 6 14Javid J Moslehi 15 16Justin M Balko 17 18 19

Elaborazione a cura di Davide Suraci

Leggi anche: Autopsie Cardiache, Anticorpi Contro la Miosina e Miocardite Autoimmune

Vasculiti, Disturbo Neurologico Funzionale e Reazioni Autoimmuni da Vaccinazioni…

Premessa

Le vaccinazioni Covid-19 stanno manifestando un numero sempre crescente di reazioni avverse in cui le componenti neurologica e psichiatrica stanno assumendo un peso significativo: assistiamo infatti a situazioni infiammatorie o pro-infiammatorie con i connotati (apparentemente) tipici delle reazioni autoimmuni e interessanti (apparentemente) il sistema nervoso periferico, così come i disturbi di questo ultimo associati al sistema nervoso centrale (quindi con i connotati di natura psichiatrica e neurologica contemporaneamente). Attualmente, la linea di demarcazione fra questi due ambiti appare confusa. Certamente la riprogrammazione epigenetica indotta dai vaccini a mRNA sta facendo il suo corso.. [Davide Suraci – 7 Febbraio 2024]

Vasculiti e Reazioni Autoimmuni ai Vaccini a DNA Ricombinante

In questo report bibliografico, pubblicato nel Capitolo 23 del testo “Vaccines and Autoimmunity” pp 239-248 (Alessandra Soriano, Rotem Inbar, Giovanna Passaro, e Raffaele Manna) di Yehuda Shoenfeld et al., vengono evidenziate le reazioni avverse (vasculiti) ai vaccini per l’epatite B, a quello per l’epatite B ricombinante, antinfluenzale e antitetanico .Lo studio mette in luce l’insorgenza di granulomatosi con poliangite (GPA), granulomatosi eosinofila con poliangite (EGPA), poliangite microscopica (MPA) a seguito della somministrazione dei vaccini citati.

E i Vaccini a mRNA?

Gli eventi avversi neurologici successivi alla vaccinazione sono generalmente lievi e transitori, come febbre e brividi, mal di testa, affaticamento, mialgia e artralgia o effetti locali nel sito di iniezione come gonfiore, arrossamento o dolore. La complicanza neurologica post-vaccinazione più devastante è la trombosi del seno venoso cerebrale. Il seno venoso cerebrale è frequentemente segnalato nelle donne in età fertile, generalmente dopo la vaccinazione a base di adenovettori. Un’altra importante complicanza neurologica preoccupante è la paralisi di Bell, segnalata prevalentemente in seguito alla somministrazione di vaccino mRNA. La mielite trasversa acuta, l’encefalomielite acuta disseminata e la polineuropatia demielinizzante acuta sono altri eventi avversi neurologici inattesi che si verificano come risultato del fenomeno del mimetismo molecolare. È stata anche registrata la riattivazione dell’herpes zoster in molte persone, in seguito alla somministrazione di vaccini a mRNA.[….] Sono necessari ampi studi prospettici collaborativi per dimostrare o confutare l’associazione causale tra vaccino ed eventi avversi neurologici che si verificano durante la vaccinazione.

[…] Dopo l’autorizzazione, viene continuamente segnalato un ampio spettro di complicazioni neurologiche a seguito della vaccinazione contro il COVID-19. Tutti i tipi di vaccini a mRNA sono associati al rischio di numerose gravi complicazioni neurologiche, come l’encefalomielite acuta disseminata, la mielite trasversa, la meningite asettica, la sindrome di Guillain-Barré, la miofascite macrofagica, la miosite, l’ictus, convulsioni, sincope. sono definiti come eventi post-vaccinazione che mettono a rischio la vita, richiedono il ricovero in ospedale o comportano una grave disabilità. La FND (Functional Neurological Disorder) correlata al vaccino COVID-19 è una malattia correlata al cervello rappresenta dal 2,88 al 3,5% delle complicanze neurologiche legate al vaccino COVID-19. La FND si verifica dopo quasi ogni tipo di vaccino COVID-19 e presenta diverse manifestazioni cliniche, tra cui motoria, sensoriale, visiva e ipersensibilità. È stato riscontrato che il vaccino antinfluenzale è associato alla narcolessia nei giovani. Diversi meccanismi patogeni, come il mimetismo molecolare, la neurotossicità diretta e le reazioni immunitarie anomale, sono stati attribuiti per spiegare questi vaccini associati a complicanze neurologiche. Anche i vaccini contro il COVID-19 non sono esenti da complicazioni neurologiche…

Capitolo 23 del testo “Vaccines and Autoimmunity” pp 239-248 (Alessandra Soriano, Rotem Inbar, Giovanna Passaro, e Raffaele Manna) di Yehuda Shoenfeld et al.

Spectrum of neurological complications following COVID-19 vaccination (Ravindra Kumar Garg and Vimal Kumar Paliwal)

Neurological Complications Following COVID-19 Vaccination (Aparajita Chatterjee and Ambar Chakravarty)

Neurological Disorders following COVID-19 Vaccination (by Ying Yang and Lisu Huang)

Disturbo Neurologico Funzionale (FND)

N.B.: Il disturbo neurologico funzionale (FND) è una condizione medica in cui si verifica un problema con il funzionamento del sistema nervoso e il modo in cui il cervello e il corpo inviano e ricevono segnali, piuttosto che un processo patologico strutturale come la sclerosi multipla o l’ictus. La FND può comprendere un’ampia varietà di sintomi neurologici come debolezza, disturbi del movimento, sintomi sensoriali e blackout. I fattori di rischio fisici e/o psicologici possono causare sintomi funzionali che devono ancora essere spiegati da una malattia riconosciuta. La FND occupa un’area grigia tra psichiatria e neurologia che storicamente non è riuscita a suscitare l’interesse di ricercatori e medici. Tuttavia, le nuove scoperte scientifiche stanno influenzando il modo in cui i pazienti vengono diagnosticati e trattati e creando un cambiamento generale nell’atteggiamento nei confronti dei pazienti con FND.

I sintomi della FND ad esordio acuto in seguito alla vaccinazione contro il COVID-19 sono rari nella popolazione generale.

[…] Ciononostante, nei giovani inclini alla FND, la vaccinazione contro il COVID-19 può innescare una FND di nuova insorgenza, una ricaduta della FND o un’esacerbazione della FND. Si ritiene che i meccanismi biologici coinvolti siano complessi: una cascata di risposte legate allo stress (inclusa la riprogrammazione epigenetica) che portano ad un’attivazione sostenuta delle reti neurali (neurone-gliali) accoppiate con un alterazione della connettività all’interno e tra le reti.

La vaccinazione sembra agire come un fattore di stress fisico o psicologico che innesca il sistema di stress e la sua cascata di risposte legate alla minaccia, con un endpoint finale di funzione aberrante della rete neurale che supporta sintomi neurologici funzionali di nuova insorgenza.

Simile alla FND innescata tramite ACE, la FND innescata dalla vaccinazione richiede una diagnosi e un trattamento tempestivi per massimizzare la probabilità che il giovane ritorni in salute e benessere. La presenza di molteplici comorbidità, mediche o psichiatriche, può complicare il processo di trattamento e influenzare negativamente i risultati a lungo termine.

COVID-19 Vaccination in Young People with Functional Neurological Disorder: A Case-Control Study

Elaborazione a cura di Davide Suraci

Il Rischio di Sviluppo di Autoimmunità dopo Vaccinazioni mRNA Covid-19 Pfizer…

In questo studio viene valutato il rischio di sviluppare autoanticorpi ANA dopo vaccinazione mRNA Pfizer. Studio condotto molto bene in quanto è evidenziato statisticamente lo sviluppo di autoanticorpi ANA (caratteristici di molte patologie/reazioni autoimmuni). Leggete tuttavia la conclusioni di questo studio..

“.. Anche se un soggetto risulta positivo per ANA dopo l’immunizzazione, il potenziale patogeno di questi autoanticorpi, il loro significato clinico e per quanto tempo persistono dopo la vaccinazione non sono ancora chiari…”

 “… Dovrebbero ancora essere condotti studi pluriennali che confuterebbero definitivamente l’ipotesi della possibile induzione di malattie autoimmuni da parte dei vaccini a mRNA… “

 “.. L’ampio spettro di interazioni tra le malattie autoimmuni e la vaccinazione SARS-CoV-2 non è completamente compreso…

The Risk of Autoimmunity Development following mRNA COVID-19 Vaccination

Rischio di Sviluppo di Reazioni Autoimmuni post vaccinazione a mRNA nei Bambini.

Di seguito, altri studi recenti in cui viene preso in considerazione il rischio di sviluppo di reazioni autoimmuni post vaccinazione a mRNA nei bambini:

Autoantibody Release in Children after Corona Virus mRNA Vaccination: A Risk Factor of Multisystem Inflammatory Syndrome?

Conclusioni: “…La sindrome infiammatoria multisistemica sembra essere una complicazione dopo COVID-19 e probabilmente con una frequenza minore dopo la vaccinazione SARS-CoV-2.

Queste complicazioni dopo la vaccinazione COVID-19 e SARS-CoV-2 possono essere correlate all’autoimmunità. Tuttavia, gli autoanticorpi accoppiati alla proteina G elevati come nei nostri casi non sono chiaramente correlati ai sintomi clinici e devono essere verificati in modo prospettico dopo la vaccinazione…”

Figura 2. Caso 2: rilascio di autoanticorpi dopo la vaccinazione Pfizer-BioNTech BNT162b2 in una ragazza di 13 anni con tiroidite di Hashimoto. Rispetto ai controlli sani e ai valori basali, abbiamo riscontrato un aumento uniforme degli autoanticorpi funzionali contro i recettori accoppiati alla proteina G e gli anticorpi antiperossidasi tiroidea in una ragazza con una malattia autoimmune nota (dopo la prima vaccinazione BNT162b2); tuttavia, dopo la seconda vaccinazione si è verificato un ulteriore aumento dei soli anticorpi antiperossidasi tiroidea. Anti-AT1R: autoanticorpo anti-recettore dell’angiotensina 1; anti-ETAR: autoanticorpo anti-recettore dell’endotelina; anti-α1 adrenerg: autoanticorpo anti-α1 adrenergico; anti-α2 adrenerg: autoanticorpo anti-α2 adrenergico; anti-β1 adrenerg: autoanticorpo anti-β1 adrenergico; anti-β2 adrenerg: autoanticorpo anti-β2 adrenergico; anti-MC R1: autoanticorpo anti-recettore colinergico-1 muscarinico; anti-MC R2: autoanticorpo anti-recettore colinergico-2 muscarinico; anti-MC R3: autoanticorpo anti-recettore colinergico-3 muscarinico; anti-MC R4: autoanticorpo anti-recettore colinergico-4 muscarinico; anti-MC R5: autoanticorpo anti-recettore colinergico-5 muscarinico.

Meccanismi di Attivazione Immunitaria post-vaccinazione a mRNA.

In questo altro studio vengono messi in luce i meccanismi di attivazione immunitaria conseguenti alle vaccinazioni a mRNA: New-onset autoimmune phenomena post-COVID-19 vaccination

I potenziali meccanismi di attivazione immunitaria innescati dal vaccino COVID-19 Le manifestazioni autoimmuni di nuova insorgenza dopo la vaccinazione contro il COVID-19 sono state ampiamente riportate.

I principali meccanismi attraverso i quali il vaccino COVID-19 innesca l’autoimmunità includono

il mimetismo molecolare, la produzione di particolari autoanticorpi e il ruolo di alcuni adiuvanti del vaccino. Precedenti studi hanno rivelato che l’infezione da SARS-CoV-2 potrebbe innescare l’autoimmunità, ma l’associazione tra vaccino COVID-19 e fenomeni autoimmuni rimane nebulosa. Il sistema respiratorio presentato come il primo organo invaso da SARS-CoV-2, che potrebbe essere coinvolto nelle reazioni incrociate tra la risposta immunitaria dopo l’infezione da SARS-CoV-2 e le proteine ​​surfattanti polmonari, perché la glicoproteina del picco di SARS-CoV-2 e le proteine ​​​​del surfattante polmonare condividevano 13 dei 24 pentapeptidi. Inoltre, la reazione incrociata tra le proteine ​​SARS-CoV-2 e una varietà di antigeni tissutali potrebbe portare all’autoimmunità contro il tessuto connettivo e il sistema cardiovascolare, gastrointestinale e nervoso. Le infezioni agiscono come trigger ambientali per causare malattie autoimmuni innescate dai vaccini, mentre gli antigeni microbici possono suscitare risposte immunitarie cross-reattive contro gli auto-antigeni. La cross-reattività immunitaria innescata dalla somiglianza tra alcuni componenti del vaccino e specifiche proteine ​​umane potrebbe rendere il sistema immunitario contro gli antigeni patogeni per attaccare proteine ​​simili nella popolazione suscettibile e portare a malattie autoimmuni, un processo noto come mimetismo molecolare. È stato sospettato che i vaccini contro l’influenza, l’epatite B e il papillomavirus umano inneschino l’autoimmunità attraverso il mimetismo molecolare. Inoltre, solo una minoranza dei soggetti vaccinati ha successivamente sviluppato fenomeni autoimmuni, indicando una predisposizione genetica all’autoimmunità indotta da vaccino. Il vaccino potrebbe innescare la risposta immunitaria adattativa per mostrare il suo effetto protettivo, che può stimolare una condizione iperinfiammatoria.

Gli individui sani dopo la vaccinazione mostrano aumenti acuti dell’espressione di IFN di tipo I, stress ossidativo e accumulo di danni al DNA nelle cellule mononucleate del sangue, insieme a un’efficace produzione di anticorpi neutralizzanti anti-SARS-CoV-2. Sprent e King ritengono che gli effetti collaterali dei vaccini COVID-19 siano semplicemente un sottoprodotto di uno scoppio transitorio della generazione di IFN-I concomitante con l’induzione di una risposta immunitaria efficace. Tuttavia, la produzione di particolari autoanticorpi può essere responsabile di questi eventi avversi.

Gli eventi VITT sono stati ampiamente riportati, che plausibilmente attribuiti all’attivazione piastrinica mediata da anticorpi contro il fattore piastrinico 4 (PF4) attraverso le interazioni IgG-FcγR. Inoltre, l’attivazione del complemento innescata dagli anticorpi anti-PF4 sembra essere implicata nella VITT. Tuttavia, Greinacher A et al. ha scoperto che gli anticorpi PF4 indotti dalla vaccinazione non reagiscono in modo incrociato con la proteina spike SARS-CoV-2. Inoltre, l’attivazione del sistema di contatto da parte dell’acido nucleico, il riconoscimento del complemento delle cellule effettrici allergiche che attivano il vaccino, il riconoscimento anticorpale preesistente di polietilenglicoli (PEG) e l’attivazione diretta dei mastociti, insieme a potenziali predisposizioni genetiche o ambientali all’ipersensibilità, spiegano anafilassi ai vaccini mRNA COVID-19.

08/2023 – Traduzione e adattamento a cura di Davide Suraci

Soppressione immunitaria innata dalle vaccinazioni mRNA SARS-CoV-2: Il ruolo del IFN-1, mRNA vaccinale no-metilazione, degli esosomi e dei microRNA, compromissione dei processi autoriparativi del DNA. (parte seconda)

Stephanie SeneffGreg NighAnthony M. Kyriakopoulos, Peter A. McCullough

Traduzione e adattamento in lingua italiana a cura di Davide Suraci

Il Ruolo degli IFN di Tipo 1 (approfondimento)

Gli IFN di tipo I svolgono un ruolo essenziale nella lotta alle infezioni virali e le carenze nella segnalazione dell’IFN di tipo I sono state associate a scarsi risultati da COVID-19 in più studi. Questi casi sono spesso associati ad autoanticorpi contro gli IFN di tipo I. Come rivisto di seguito, gli IFN di tipo I sono stati utilizzati con un certo successo nel trattamento del COVID-19 grave, in particolare se somministrati molto presto nel processo patologico. Se, come sostenuto in precedenza, i vaccini a mRNA interferiscono con la segnalazione dell’IFN di tipo I, ciò potrebbe portare a una maggiore suscettibilità al COVID-19 nelle due settimane successive al primo vaccino, prima che sia iniziata una risposta anticorpale. Le cellule infettate da un virus rilevano la presenza della replicazione del virus attraverso una serie di recettori di riconoscimento del modello (PRR), che fungono da sentinelle che rilevano le strutture aberranti dell’RNA che spesso si formano durante la replicazione virale. Questi recettori rispondono oligomerizzando e successivamente inducendo IFN di tipo I, regolando in ultima analisi un gran numero di proteine ​​​​coinvolte nella soppressione della proliferazione virale (Janeway e Medzhitov, 2002).

Uno studio multi-autore condotto da ricercatori a Parigi, in Francia, che ha coinvolto una coorte di 50 pazienti COVID-19 con vari gradi di gravità della malattia, ha rivelato che i pazienti con malattia grave erano caratterizzati da una risposta IFN di tipo I altamente compromessa (Hadjadj et al., 2020). Questi pazienti sostanzialmente non presentavano IFN-β e bassa produzione e attività di IFN-α. Ciò era associato a una carica virale ematica persistente e a una risposta infiammatoria esacerbata, caratterizzata da alti livelli di fattore di necrosi tumorale α (TNF-α) e Il-6. Gli autori hanno proposto la terapia con IFN di tipo I come potenziale opzione terapeutica. Un documento di diversi ricercatori negli Stati Uniti ha anche identificato una risposta infiammatoria unica e inappropriata in pazienti con COVID-19 grave, caratterizzata da bassi livelli di IFN sia di tipo I che di tipo III insieme a chemochine elevate ed elevata espressione di Il-6 (Blanco- Melò et al., 2020). Gli IFN di tipo I sono stati persino proposti come opzione terapeutica per il COVID-19 grave. In un modello di criceto, i ricercatori hanno esposto i criceti alla SARS-CoV-2 e hanno indotto una risposta infiammatoria nei polmoni e un’infiammazione sistemica nei tessuti distali. Hanno scoperto che la somministrazione intranasale di IFN-α ricombinante ha comportato una riduzione della carica virale e un alleviamento dei sintomi (Hoagland et al., 2021). Uno studio di coorte retrospettivo su 446 pazienti affetti da COVID-19 ha determinato che la somministrazione precoce di IFN-α2b era associata a una ridotta mortalità intraospedaliera. Tuttavia, la terapia tardiva con IFN ha aumentato la mortalità e ritardato il recupero, rivelando che la somministrazione precoce della terapia con interferone è essenziale per una risposta favorevole (Wang et al., 2020a). Un numero sorprendente di persone ha autoanticorpi neutralizzanti contro gli IFN di tipo I, sebbene l’eziologia alla base di questo fenomeno non sia stata compresa. Uno studio che ha utilizzato la profilazione longitudinale di oltre 600.000 cellule mononucleate del sangue periferico e il sequenziamento del trascrittoma di 54 pazienti con COVID-19 e 26 controlli ha rilevato una notevole mancanza di risposte geniche stimolate dall’IFN di tipo I nelle cellule mieloidi di pazienti con malattia critica (van der Wijst et al. al., 2021).

Human Interferon – By Nevit Dilmen – Self created from PDB entry with Cn3D Data Source: https://www.ncbi.nlm.nih.gov/Structure/, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1307713

Gli autoanticorpi neutralizzanti contro gli IFN di tipo I sono stati trovati nel 19% dei pazienti con malattia critica, nel 6% dei pazienti con malattia grave e nello 0% dei pazienti con malattia moderata. Un altro studio con sede a Madrid, in Spagna, ha rivelato che il 10% dei pazienti con grave malattia da COVID-19 aveva anticorpi autoimmuni contro gli IFN di tipo I (Troya et al., 2021). Uno studio multi-autore con sede in Francia ha rilevato che la mortalità per COVID-19 era significativamente più frequente nei pazienti con autoanticorpi neutralizzanti contro l’interferone di tipo I rispetto a quelli senza anticorpi neutralizzanti (55% vs. 23%) (Chauvineau ‐ Grenier et al., 2022) . Infine, Stertz e Hale (2021) notano che, a causa di autoanticorpi o forse di polimorfismi con perdita di funzione associati ai geni del sistema dell’interferone, le carenze nella produzione di interferone sono associate a ben il 15% di tutti i casi di COVID-19 potenzialmente letali .

mRNA Vaccinale non Prevede le Strategie di Metilazione?

Le strategie di metilazione per il mantenimento cellulare sono generalmente omesse dagli mRNA del vaccino? La metilazione degli mRNA è stata evolutivamente concepita per controllare la traduzione delle trascrizioni e quindi l’espressione dei geni da parte di una complessa cascata di proteine ​​metilatrici (scrittori), de-metilatrici (cancellatori) e lettrici. La metilazione dell’adenosina è la modifica epitranscriptomica più abbondante dell’mRNA e si verifica in più siti attraverso la molecola dell’mRNA (Zaccara et al., 2019).

Una metilazione chiave dell’adenosina “N6-metiladenosina (m6A)” specificatamente nel 5′ UTR degli mRNA regola la normale fisiologia cellulare, la risposta infiammatoria e la progressione del cancro. Il ruolo e i meccanismi di m6A nelle malattie umane sono estesi ed è trattato in modo eccellente in altre revisioni complete (Yang et al., 2020; Knuckles e Bühler, 2018).

Primo tra questi, la vaccinazione molecolare SARS-CoV-2 induce condizioni di stress cellulare, come descritto dall’elevata segnalazione di NF-κB dopo la vaccinazione (Liu et al., 2021; Koo et al., 2010). In condizioni di stress cellulare, che può essere indotto da un’infezione virale o da stati patologici come il cancro, m6A media gli mRNA affinché subiscano la traduzione preferenzialmente in modo indipendente dal capside (Meyer et al., 2015). Come discusso in precedenza, questo è l’opposto dell’impatto della vaccinazione mRNA SARS-CoV-2, che spinge le cellule verso una traduzione cap-dipendente. Inoltre, in condizioni diversificate di stress cellulare, vi è un’induzione schiacciante dell’aggiunta di m6A a tutto il trascrittoma che fa sì che un numero maggiore di mRNA possieda 5’UTR arricchiti con m6A (Meyer et al., 2015).

Il fattore di inizio della traduzione eucariotica 4E (eIF4E) è la proteina legante il cappuccio iniziale dell’mRNA che dirige i ribosomi alla struttura del cappuccio degli mRNA, al fine di avviare la traduzione in proteine. La dipendenza dalla traduzione cap-dipendente degli mRNA del vaccino consumerà un surplus di disponibilità di eIF4E necessaria per tradurre un numero innaturalmente elevato di mRNA sintetici. Tuttavia, la traduzione indipendente dal limite avviene senza richiedere che eIF4E sia associato a eIF4F. La competizione per i ribosomi si sposterà verso la traduzione dei trascritti cap-indipendente, poiché gli mRNA sottoposti a traduzione cap-indipendente sono dotati, a parte i siti di ingresso dei ribosomi interni (IRES), di speciali motivi di legame che si legano a fattori che reclutano attivamente mRNA ai potenziatori traslazionali indipendenti dal cappuccio del ribosoma (CITE) (Shatsky et al., 2018). Inoltre, ciò significa anche che eIF4E, che è un potente regolatore oncogenico e modulatore della proliferazione cellulare, sosterrà le sue attività grazie a questa competizione per un periodo di tempo innaturalmente prolungato, cercando di controbilanciare la competizione tra mRNA con capside resistente nei vaccini e contenenti IRES mRNA (Kyriakopoulos e McCullough, 2021; Svitkin et al., 2005). Questo tipo di condizione si traduce in una disregolazione delle modifiche co-trascrizionali dell’mRNA m6A e si collega seriamente alle progressioni molecolari di vari tumori (Han e Choe, 2020), oltre a creare condizioni predisponenti per successive infezioni virali (Svitkin et al., 2005). Successivamente consideriamo l’impatto della glicoproteina spike SARS-CoV-2 derivata dalla vaccinazione mRNA sul sistema IFN cellulare attraverso la massiccia produzione di esosomi.

Esosomi e microRNA

Un’importante rete di comunicazione tra le cellule è costituita dalle vescicole extracellulari (EV) che vengono costantemente rilasciate da una cellula e successivamente assorbite da un’altra cellula, che potrebbe trovarsi in un organo distante. Piccole vescicole note come esosomi, formate all’interno degli endosomi, sono di dimensioni simili ai virus e vengono rilasciate attraverso l’esocitosi nello spazio extracellulare per circolare successivamente in tutto il corpo (Yoshikawa et al., 2019). Gli esosomi possono fornire una collezione diversificata di molecole biologicamente attive, tra cui mRNA, microRNA (miRNA), proteine, e lipidi (Ratajczak e Ratajczak, 2016). Durante un’infezione virale, le cellule infette secernono grandi quantità di esosomi che fungono da rete di comunicazione tra le cellule per orchestrare la risposta all’infezione (Chahar et al., 2015). In uno sforzo collaborativo di un team di ricercatori dell’Arizona e del Connecticut, è stato scoperto che le persone vaccinate con i vaccini mRNA hanno acquisito esosomi circolanti contenenti la glicoproteina spike SARS-CoV-2 entro il giorno 14 successivo alla vaccinazione (Bansal et al., 2021 ). Hanno anche scoperto che non c’erano anticorpi circolanti contro la glicoproteina spike quattordici giorni dopo il primo vaccino. Dopo il secondo vaccino, tuttavia, il numero di esosomi circolanti contenenti glicoproteina spike è aumentato fino a un fattore 12. Inoltre, gli anticorpi sono comparsi per la prima volta il giorno 14. Gli esosomi presentavano glicoproteina spike sulla loro superficie, che, secondo gli autori, indicavano una produzione di anticorpi facilitata. Quando i topi sono stati esposti a esosomi derivati ​​da persone vaccinate, hanno sviluppato anticorpi contro la glicoproteina spike. È interessante notare che, dopo l’espressione di picco, il numero di esosomi circolanti contenenti glicoproteina spike è diminuito nel tempo, di pari passo con la diminuzione del livello di anticorpi contro la glicoproteina spike.

Biogenesis of extracellular vescicles from eukaryotic cell

Gli esosomi esistono come parte del meccanismo di decadimento dell’mRNA in stretta associazione in condizioni di stress con granuli di stress (SG) e corpi P (PB) (Decker e Parker, 2012; Kothandan et al., 2020). In condizioni di traduzione indotta da vaccino-mRNA, che potrebbe essere definita “eccessiva dipendenza dalla traduzione cap-dipendente”, esiste un’evidente resistenza alla promozione e all’assemblaggio del grande complesso di decapping (Kyriakopoulos e McCullough, 2021), e quindi resistenza contro processi fisiologici di decadimento dell’mRNA (Decker e Parker, 2012). Ciò significherebbe che il destino di particolari mRNA sintetici che altrimenti sarebbero determinati dalla strategia cellulare comune per il turnover dell’mRNA che coinvolge le ribonucleinproteine ​​messaggere (mRNP) viene omesso (Borbolis e Syntichaki, 2015). Inoltre, in condizioni di eccessivo affidamento sulla traduzione cap-dipendente da parte degli mRNA sintetici nei vaccini SARS-CoV-2 (Kyriakopoulos e McCullough, 2021), molti mRNA nativi che contengono una considerevole IRES e metilazioni specifiche (m6A) nella loro struttura sceglieranno favorevolmente traduzione indipendente dal capside, che è fortemente legata ai meccanismi di controllo della qualità del decadimento dell’mRNA (Han e Choe, 2020). In questo senso, considerevoli prodotti di mRNA deadenilati così come prodotti derivati ​​dal metabolismo dell’mRNA (decadimento) sono direttamente collegati ai carichi esosomici (Borbolis e Syntichaki, 2015). Un esempio di dipendenza dalla traduzione cap-dipendente è descritto nella leucemia linfoblastica acuta a cellule T (T-ALL). A causa del target meccanicistico della rapamicina C (mTORC) -1 sovrafunzionante in T-ALL, le cellule sono guidate completamente verso la traduzione cap-dipendente (Girardi e De Keersmaecker, 2015). Una condizione analoga è descritta da Kyriakopoulos e McCullough (2021). Anche in questo stato canceroso altamente aggressivo, durante l’inibizione della traduzione cap-dipendente nelle cellule T-ALL, c’è una rapida reversione alla traduzione cap-indipendente (Girardi e De Keersmaecker, 2015). Allo stesso modo, un’infezione da picornavirus (Jang et al., 1990) spinge le cellule verso la traduzione indipendente dal capside a causa dell’inibizione dei componenti del complesso eIF4F e del pluralismo di IRES nell’RNA virale.

Negli esseri umani, vi è un’abbondanza di infezioni da picornavirus per lo più asintomatiche come il virus Safford con una sieroprevalenza superiore al 90% nei bambini e negli adulti (Zoll et al., 2009). In entrambi i casi, sia che si tratti di un evento apoptotico dovuto a una condizione simile allo stress (Rusk, 2008) o di un effetto carcinomatoso simile a un mRNA-cap-driven (De Paolis et al., 2021), i livelli di miRNA saranno aumentati a causa del aumento del funzionamento epitrascrittomico e aumento del decadimento dell’mRNA. A causa dell’elevata domanda di espressione genica, saranno elevati livelli di alcuni miRNA dovrebbe essere contenuto negli esosomi tramite corpi P (Yu et al., 2016). Inoltre, in condizioni di produzione schiacciante di glicoproteina spike SARS-CoV-2 dovuta alla vaccinazione molecolare SARS-CoV-2, ci si aspetterebbe ovviamente che una percentuale significativa di glicoproteine ​​spike intracellulari sovrabbondanti venga esportata anche tramite carichi esosomici ( Wei et al., 2021). Mishra e Banerjea (2021) hanno studiato il ruolo degli esosomi nella risposta cellulare delle cellule trasfettate con spike SARS-CoV-2. Hanno scritto nell’abstract:

“We propose that SARS-CoV-2 gene product, Spike, is able to modify the host exosomal cargo, which gets transported to distant uninfected tissues and organs and can initiate a catastrophic immune cascade within Central Nervous System (CNS).”

“Proponiamo che il prodotto del gene SARS-CoV-2, Spike, sia in grado di modificare il carico esosomico dell’ospite, che viene trasportato a tessuti e organi distanti non infetti e può avviare una cascata immunitaria catastrofica all’interno del sistema nervoso centrale (SNC).”

I loro esperimenti hanno coinvolto la crescita di cellule umane HEK293T in coltura e la loro esposizione ai plasmidi del gene spike SARS-CoV-2, che hanno indotto la sintesi della glicoproteina spike all’interno delle cellule. Hanno scoperto sperimentalmente che queste cellule rilasciavano abbondanti esosomi che ospitavano glicoproteina spike insieme a microRNA specifici. Hanno quindi raccolto gli esosomi e li hanno trasferiti in una coltura cellulare di microglia umana (le cellule immunitarie che risiedono nel cervello). Hanno dimostrato che la microglia assorbiva prontamente gli esosomi e rispondeva ai microRNA avviando una risposta infiammatoria acuta. Il ruolo della microglia nel causare la neuroinfiammazione in varie malattie virali, come il virus dell’immunodeficienza umana (HIV), il virus dell’encefalite giapponese (JEV) e la dengue, è ben consolidato.

Hanno proposto che la comunicazione cellula-cellula a lunga distanza tramite gli esosomi potrebbe essere il meccanismo mediante il quale i sintomi neurologici si manifestano nei casi gravi di COVID-19.

In un’ulteriore esplorazione, gli autori hanno identificato due microRNA che erano presenti in alte concentrazioni negli esosomi: miR-148a e miR-590. Hanno proposto un meccanismo specifico mediante il quale questi due microRNA interromperebbero in modo specifico la segnalazione dell’interferone di tipo I, attraverso la soppressione di due proteine ​​critiche che controllano il percorso: la peptidasi 33 specifica dell’ubiquitina (USP33) e l’IRF9. Gli eterodimeri STAT1 e STAT2 fosforilati richiedono IRF9 per legare gli elementi di risposta stimolati da IFN, e quindi IRF9 svolge un ruolo essenziale nella risposta di segnalazione. Gli autori hanno dimostrato sperimentalmente che la microglia esposta agli esosomi estratti dalla coltura HEK293 aveva una diminuzione del 50% nell’espressione cellulare di USP33 e una diminuzione del 60% in IRF9. Hanno inoltre scoperto che miR-148a blocca specificamente USP33 e miR-590 blocca specificamente IRF9. USP33 rimuove l’ubiquitina da IRF9 e così facendo la protegge dal degrado. Pertanto, i due microRNA cospirano insieme per interferire con IRF9, bloccando così la risposta del recettore agli interferoni di tipo I. Uno studio di de Gonzalo-Calvo et al. (2021) hanno esaminato il profilo del microRNA nel sangue dei pazienti con COVID-19 e la loro varianza quantitativa basata sulla gravità della malattia. Si è scoperto che più miRNA erano regolati verso l’alto e verso il basso. Tra questi c’era miR-148a-3p, il filamento guida precursore di miR-148a. Tuttavia, il miR-148a stesso non era tra i microRNA catalogati come eccessivi o carenti nel loro studio, né lo era il miR-590. Da questi risultati risulta che miR148a e miR-590 e i loro effetti infiammatori sono unici per la produzione di glicoproteina spike SARS-CoV-2 indotta dalla vaccinazione. Studi con traccianti hanno dimostrato che, dopo l’iniezione nel muscolo del braccio, l’mRNA nei vaccini a mRNA viene trasportato nel sistema linfatico dalle cellule immunitarie e infine si accumula nella milza in alte concentrazioni (Bahl et al., 2017). Altri studi hanno dimostrato che le cellule immunitarie stressate nei centri germinali della milza rilasciano grandi quantità di esosomi che viaggiano verso i nuclei del tronco cerebrale lungo il nervo vago (come rivisto in Seneff e Nigh (2021)). Il nervo vago è il decimo nervo cranico ed entra nel tronco encefalico vicino alla laringe.

Il superiore e ricorrente i nervi laringei sono rami del vago che innervano le strutture coinvolte nella deglutizione e nel parlare. Le lesioni in questi nervi causano la paralisi delle corde vocali associata a difficoltà a deglutire (disfagia), difficoltà a parlare (disfonia) e/o mancanza di respiro (dispnea) (Gould et al., 2019; Erman et al., 2009). Torneremo su queste patologie specifiche nella nostra revisione dei dati VAERS di seguito. Le cellule HEK293 erano originariamente derivate da colture prelevate dal rene di un feto umano diversi decenni fa e immortalate attraverso l’infezione con il DNA dell’adenovirus. Sebbene siano state estratte dal rene, le cellule mostrano attraverso il loro profilo di espressione proteica che è probabile che siano di origine neuronale (Shaw et al., 2002). Ciò suggerisce che i neuroni nel nervo vago risponderebbero in modo simile alla glicoproteina spike SARS-CoV-2. Pertanto, le prove disponibili suggeriscono fortemente che la glicoproteina spike SARS-CoV-2 prodotta in modalità endogena crei un profilo di microRNA diverso rispetto all’infezione naturale con SARS-CoV-2 e tali differenze comportano una gamma potenzialmente ampia di effetti deleteri. Un punto centrale della nostra analisi di seguito è l’importante distinzione tra l’impatto della vaccinazione rispetto all’infezione naturale sull’IFN di tipo I. Mentre la vaccinazione sopprime attivamente la sua produzione, l’infezione naturale promuove la produzione di IFN di tipo I molto presto nel ciclo della malattia. Quelli con condizioni preesistenti spesso mostrano una segnalazione IFN di tipo I compromessa, che porta a COVID-19 più grave, critico e persino fatale. Se la compromissione indotta dal vaccino viene mantenuta mentre i livelli di anticorpi diminuiscono nel tempo, ciò potrebbe portare a una situazione in cui il vaccino provoca un’espressione della malattia più grave di quanto sarebbe avvenuto in assenza del vaccino. Un’altra conseguenza prevista della soppressione dell’IFN di tipo I sarebbe la riattivazione di infezioni virali croniche preesistenti, come descritto nella Sezione 9.

Riparazione del DNA compromessa e immunità adattativa

Il sistema immunitario e il sistema di riparazione del DNA sono i due sistemi primari su cui fanno affidamento gli organismi superiori per difendersi da diverse minacce e condividono elementi comuni. La perdita di funzione delle principali proteine ​​di riparazione del DNA porta a difetti di riparazione che inibiscono la produzione di cellule B e T funzionali, con conseguente immunodeficienza. La riparazione dell’unione dell’estremità non omologa (NHEJ) svolge un ruolo fondamentale nella ricombinazione V (D) J specifica dei linfociti, che è essenziale per produrre il repertorio altamente diversificato di anticorpi delle cellule B in risposta all’esposizione all’antigene (Jiang e Mei, 2021) .

La riparazione del DNA compromessa è anche una via diretta verso il cancro.

Un articolo pubblicato da Liu et al., nel 2021 ha monitorato diversi parametri associati alla funzione immunitaria in una coorte di pazienti conducendo il sequenziamento dell’mRNA a cellula singola delle cellule mononucleari del sangue periferico (PBMC) raccolte dai pazienti prima e 28 giorni dopo la prima iniezione di un vaccino COVID-19 basato su una versione indebolita del virus (Liu et al., 2021). Sebbene questi vaccini siano diversi dai vaccini a mRNA, funzionano anche iniettando il contenuto del vaccino nel muscolo deltoide, aggirando le barriere mucose e vascolari. Gli autori hanno riscontrato un’alterazione consistente dell’espressione genica dopo la vaccinazione in molti diversi tipi di cellule immunitarie. Gli aumenti osservati nella segnalazione di NF-κB e le risposte IFN di tipo I ridotte sono stati ulteriormente confermati da test biologici. Coerentemente con altri studi, hanno scoperto che STAT2 e IRF7 erano significativamente sottoregolati 28 giorni dopo la vaccinazione, indicativi di risposte IFN di tipo I alterate. Hanno scritto: “Insieme, questi dati hanno suggerito che dopo la vaccinazione, almeno entro il giorno 28, oltre alla generazione di anticorpi neutralizzanti, il sistema immunitario delle persone, compresi quelli dei linfociti e dei monociti, era forse in uno stato più vulnerabile”. (Liu et al., 2021).

Questi autori hanno anche identificato cambiamenti inquietanti nell’espressione genica che implicherebbero una ridotta capacità di riparare il DNA. Fino al 60% dell’attività trascrizionale totale nelle cellule in crescita comporta la trascrizione del DNA ribosomiale (rDNA) per produrre RNA ribosomiale (rRNA). L’enzima che trascrive il DNA ribosomiale in RNA è l’RNA polimerasi I (Pol I). Pol I monitora anche l’integrità dell’rDNA e influenza la sopravvivenza cellulare (Kakarougkas et al., 2013). Durante la trascrizione, le RNA polimerasi (RNAP) scansionano attivamente il DNA per trovare lesioni voluminose (rotture a doppio filamento) e innescare la loro riparazione. Nelle cellule eucariotiche in crescita, la maggior parte della trascrizione comporta la sintesi dell’RNA ribosomiale da parte di Pol I. Pertanto, Pol I promuove la sopravvivenza in seguito a danni al DNA (Kakarougkas et al., 2013). Molti dei geni sottoregolati identificati da Liu et al. (2021) sono stati collegati al ciclo cellulare, al mantenimento dei telomeri e sia all’apertura del promotore che alla trascrizione di POL I, indicativi di processi di riparazione del DNA compromessi. Uno dei set di geni che sono stati soppressi era dovuto alla “deposizione di nuovo CENPA [proteina centromerica A] contenente nucleosomi al centromero”. Il CENPA di nuova sintesi è depositato nei nucleosomi al centromero durante la tarda telofase/la prima fase G1 del ciclo cellulare. Ciò indica l’arresto del ciclo cellulare nella fase G1 come caratteristica della risposta al vaccino SARS-CoV-2 inattivato. L’arresto di cellule staminali embrionali pluripotenti nella fase G1 (prima dell’inizio della replicazione) comporterebbe un auto-rinnovamento compromesso e il mantenimento della pluripotenza (Choi et al., 2013). Due proteine ​​checkpoint coinvolte in modo cruciale nella riparazione del DNA e nell’immunità adattativa sono BRCA1 e 53BP1, che facilitano sia la ricombinazione omologa (HR) che NHEJ, i due processi di riparazione primari (Zhang e Powell, 2005; Panier e Boulton, 2014). In un esperimento in vitro su cellule umane, è stato specificamente dimostrato che la glicoproteina spike a lunghezza intera SARS-CoV-2 entra nel nucleo e ostacola il reclutamento di queste due proteine ​​​​di riparazione nel sito di una rottura del doppio filamento (Jiang e Mei, 2021). Gli autori hanno riassunto le loro scoperte dicendo: “Meccanicisticamente, abbiamo scoperto che la proteina spike si localizza nel nucleo e inibisce la riparazione del danno al DNA impedendo il reclutamento della proteina chiave di riparazione del DNA BRCA1 e 53BP1 nel sito del danno”. Un altro meccanismo attraverso il quale i vaccini a mRNA potrebbero interferire con la riparazione del DNA è attraverso il miR-148. Questo microRNA ha dimostrato di sottoregolare le risorse umane nella fase G1 del ciclo cellulare (Choi et al., 2014). Come accennato in precedenza in questo documento, questo era uno dei due microRNA trovati negli esosomi rilasciati dalle cellule umane in seguito alla sintesi della glicoproteina spike SARS-CoV-2 negli esperimenti di Mishra e Banerjea (2021).

A proposito di Trombocitopenia autoimmune

I vaccini a mRNA non sono privi di rischi per la VITT (trombocitopenia trombotica immunitaria indotta da vaccino), poiché sono stati pubblicati studi di casi che documentano tali eventi, inclusa la trombosi del seno venoso cerebrale mortale e fatale (vedi conclusioni della prima parte del lavoro in oggetto) (Lee et al., 2021Akiyama et al., 2021Atoui et al., 2022Zakaria et al., 2021). Il meccanismo si ritiene che coinvolga gli anticorpi VITT che si legano al fattore piastrinico 4 (PF4) e formino immunocomplessi che inducono l’attivazione piastrinica. Le successive cascate di coagulazione causano la formazione di microcoaguli diffusi nel cervello, nei polmoni, nel fegato, nelle gambe e altrove, associati a un drastico calo della conta piastrinica (Kelton et al., 2021). La reazione al vaccino è stata descritta come molto simile alla trombocitopenia indotta da eparina (HIT), tranne per il fatto che la somministrazione di eparina non è coinvolta (Cines and Bussel, 2021). È stato dimostrato che i vaccini mRNA suscitano principalmente una risposta immunitaria immunoglobulinica G (IgG), con quantità minori di IgA indotte (Wisnewski et al., 2021) e ancor meno produzione di IgM (Danese et al., 2021). La quantità di anticorpi IgG prodotti è paragonabile alla risposta osservata nei casi gravi di COVID-19. Sono gli anticorpi IgG in complesso con l’eparina che inducono l’HIT. Si può ipotizzare che le IgG complessate con la glicoproteina spike SARS-CoV-2 e PF4 siano il complesso che induce la VITT in risposta ai vaccini a mRNA. È stato infatti dimostrato sperimentalmente che il dominio di legame del recettore (RBD) della proteina spike si lega al PF4 (Passariello et al., 2021).

https://www.nejm.org/doi/full/10.1056/NEJMoa2109908

Il meccanismo alla base di HIT è stato ben studiato, anche attraverso l’uso di modelli murini umanizzati. È interessante notare che le piastrine umane, ma non le piastrine di topo, esprimono il recettore FcγRIIA, che risponde ai complessi PF4/eparina/IgG attraverso una cascata di fosforilazione della tirosina per indurre l’attivazione piastrinica. All’attivazione, le piastrine rilasciano granuli e generano microparticelle procoagulanti. Inoltre assorbono il calcio, attivano la proteina chinasi C, si aggregano in microtrombi e lanciano una cascata di morte cellulare tramite l’attivazione della calpaina. Queste piastrine attivate rilasciano PF4 nello spazio extracellulare, favorendo un circolo vizioso, poiché questo ulteriore PF4 si lega anche all’eparina e all’anticorpo IgG per promuovere ulteriormente l’attivazione piastrinica. Pertanto, FcγRIIA è fondamentale per il processo patologico (Nevzorova et al., 2019).

Studi su topi ingegnerizzati per esprimere il recettore FcγRIIA umano hanno dimostrato che questi topi transgenici sono molto più suscettibili alla trombocitopenia rispetto alle loro controparti wild type (McKenzie et al., 1999). È stato proposto che le piastrine possano svolgere un ruolo importante nella clearance dei complessi antigene-anticorpo intrappolando l’antigene nei trombi e/o trasportandolo nella milza per la rimozione da parte delle cellule immunitarie. Le piastrine vengono ovviamente rapidamente consumate nel processo, il che si traduce quindi in un basso numero di piastrine (trombocitopenia).

Le piastrine normalmente circolano con una vita media di soli cinque-nove giorni, quindi vengono costantemente sintetizzate nel midollo osseo e eliminate nella milza. Le piastrine legate agli anticorpi, dopo l’attivazione piastrinica tramite i recettori Fcγ, migrano verso la milza dove vengono intrappolate e rimosse attraverso la fagocitosi dai macrofagi (Crow e Lazarus, 2003). Completamente un terzo delle piastrine totali del corpo si trovano nella milza. Poiché i vaccini a mRNA vengono trasportati nella milza da cellule immunitarie inizialmente attratte dal sito di iniezione nel muscolo del braccio, esiste un’enorme opportunità per il rilascio di esosomi contenenti spike-glicoproteina da parte delle cellule dendritiche nella milza che sintetizzano la proteina spike. Si può ipotizzare che l’attivazione piastrinica in seguito alla formazione di un complesso proteico P4F/IgG/spike nella milza sia parte del meccanismo che tenta di eliminare la glicoproteina spike tossica.

Abbiamo accennato in precedenza che uno dei due microRNA altamente espressi negli esosomi rilasciati dalle cellule umane esposte alla glicoproteina spike SARS-CoV-2 era miR-148a. È stato dimostrato sperimentalmente che miR-148a sopprime l’espressione di una proteina che svolge un ruolo centrale nella regolazione dell’espressione di FcγRIIA sulle piastrine. Questa proteina, chiamata T-cell ubiquitin ligand-2 (TULA-2), inibisce specificamente l’attività del recettore piastrinico Fcγ. miR-148a prende di mira l’mRNA di TULA-2 e ne riduce l’espressione. Pertanto, miR-148a, presente negli esosomi rilasciati dai macrofagi che sono costretti dal vaccino a sintetizzare la glicoproteina spike SARS-CoV-2, agisce per aumentare il rischio di trombocitopenia in risposta agli immunocomplessi formati dall’antigene della glicoproteina spike e dagli anticorpi IgG prodotti contro la glicoproteina spike.

PPAR-α, sulfatide e malattie del fegato

Come abbiamo già affermato, un esperimento di Mishra e Banerjea (2021) ha dimostrato che la glicoproteina spike SARS-CoV-2 induce il rilascio di esosomi contenenti microRNA che interferiscono specificamente con la sintesi di IRF9. In questa sezione mostreremo che una delle conseguenze della soppressione di IRF9 sarebbe la ridotta sintesi di solfatide nel fegato, mediata dal recettore nucleare attivato dal proliferatore del perossisoma recettore α (PPAR-α).

I solfatidi sono i principali sfingoglicolipidi sierici dei mammiferi che sono sintetizzati e secreti principalmente dal fegato (Lu et al., 2019). Sono gli unici sfingolipidi solfonati nel corpo. I solfatidi sono formati da un processo in due fasi che comporta la conversione della ceramide in galattocerebroside e la sua successiva solfatazione. Il solfatide è espresso sulla superficie delle piastrine, degli eritrociti e dei linfociti. I solfatidi sierici esercitano funzioni sia anticoagulanti che anti-attivazione piastrinica. L’enzima nel fegato che sintetizza il solfatide, cerebroside sulfotransferasi, è stato specificamente trovato essere indotto dall’attivazione di PPAR-α nei topi (Kimura et al., 2012). Pertanto, la ridotta espressione di PPAR-α porta alla carenza di solfatide.

I ligandi PPAR-α mostrano effetti antinfiammatori e antifibrotici, mentre la carenza di PPAR-α porta a steatosi epatica, steatoepatite, steatofibrosi e cancro al fegato (Wang et al., 2020b). Nel 2019, un team di ricercatori in Giappone ha condotto un esperimento su topi con un gene difettoso per PPAR-α (Lu et al., 2019). Questi topi, se nutriti con una dieta ricca di colesterolo, erano suscettibili all’accumulo eccessivo di trigliceridi e all’esacerbazione dell’infiammazione e dello stress ossidativo nel fegato, insieme a livelli aumentati di fattori della coagulazione. I topi hanno anche manifestato livelli ridotti di solfatidi sia nel fegato che nel siero. Gli autori hanno ipotizzato che il sovraccarico di colesterolo eserciti i suoi effetti tossici in parte aumentando la trombosi, a seguito di un metabolismo lipidico epatico anormale e di stress ossidativo. Hanno dimostrato che il PPAR-α può attenuare questi effetti tossici attraverso la regolazione trascrizionale dei fattori della coagulazione e la sovraregolazione della sintesi del solfatide, oltre ai suoi effetti nel migliorare le malattie del fegato. Hanno proposto che terapie come i fibrati volti ad attivare il PPAR-α potrebbero prevenire le malattie cardiovascolari indotte da una dieta ad alto contenuto di colesterolo.

Studi con traccianti hanno dimostrato che l’mRNA dei vaccini a mRNA migra preferenzialmente verso il fegato e la milza, raggiungendo concentrazioni più elevate rispetto a qualsiasi altro organo ( Bahl et al., 2017 ). Pertanto, esiste il potenziale per la soppressione dell’IRF9 nel fegato da parte del vaccino. IRF9 è altamente espresso negli epatociti, dove interagisce con PPAR-α, attivando i geni bersaglio PPAR-α. Uno studio sui topi knockout IRF9 ha mostrato che questi topi hanno sviluppato steatosi e insulino-resistenza epatica se esposti a una dieta ricca di grassi. Al contrario, la sovraespressione epatica di IRF9 mediata da adenovirus nei topi obesi ha migliorato la sensibilità all’insulina e migliorato la steatosi e l’infiammazione ( Wang et al., 2013 ).

Numerosi casi clinici nella letteratura di ricerca descrivono danni al fegato in seguito a vaccini a mRNA ( Zin Tun et al., 2021 ; Dumortiera, 2022 ; Mann et al., 2021 ). Un fattore plausibile che porta a questi risultati è la soppressione del PPAR-α attraverso la downregulation dell’IRF9 e successivamente la diminuzione della sintesi del solfatide nel fegato.

Sindrome di Guillain Barré e sindromi da danno neurologico

La GBS è una neuropatia infiammatoria demielinizzante acuta associata a morbilità di lunga durata e un significativo rischio di mortalità ( Cr é ange, 2000 ). La malattia comporta un attacco autoimmune ai nervi associato al rilascio di citochine pro-infiammatorie.

Il GBS è spesso associato ad autoanticorpi contro il solfatide e altri sfingolipidi ( Ilyas et al., 1991 ). Le cellule T attivate producono citochine in risposta alla presentazione dell’antigene da parte dei macrofagi e queste citochine possono indurre la produzione di autoanticorpi attraverso la diffusione dell’epitopo ( Vanderlugt e Miller, 2002 ). Gli anticorpi, a loro volta, inducono l’attivazione del complemento, che causa demielinizzazione e danno assonale, portando a gravi lesioni ai neuroni periferici ( Kuwahara e Kusunoki, 2018 ). È stato dimostrato che la glicoproteina spike SARS-CoV-2 si lega all’eparan solfato, che è un complesso ammino-zuccherino solfato simile al galattosio solfatato nel solfatide ( Kalra e Kandimalla, 2021). Pertanto, è concepibile che la glicoproteina spike si leghi anche al sulfatide e ciò potrebbe innescare una reazione immunitaria al complesso spike-glicoproteina-sulfatide.

Come descritto nella sezione precedente, la ridotta sintesi di solfatidi nel fegato dovuta alla soppressione dell’IRF9 porterà nel tempo a una carenza sistemica di solfatidi. La carenza di solfatidi può avere un impatto importante sul cervello e sul sistema nervoso. Il 20% dei galattolipidi presenti nella guaina mielinica sono solfatidi. Il solfatide è un componente importante del sistema nervoso, presente in concentrazioni particolarmente elevate nella guaina mielinica sia nel sistema nervoso periferico che in quello centrale. Le carenze di sulfatide possono portare a debolezza muscolare, tremori e atassia ( Honke, 2013 ), che sono sintomi comuni di GBS. La neuroinfiammazione cronica mediata dalla microglia e dagli astrociti nel cervello porta a drammatiche perdite di sulfatide cerebrale e le carenze cerebrali di sulfatide sono una delle principali caratteristiche della malattia di Alzheimer.Qiu et al., 2021 ). I topi con un difetto nella capacità di sintetizzare il solfatide dalla ceramide mostrano una ridotta capacità di mantenere la salute degli assoni mentre invecchiano. Nel corso del tempo, sviluppano guaine mieliniche ridondanti, non compattate e in degenerazione, nonché una struttura deteriorante nei nodi di Ranvier negli assoni, causando la perdita di una giunzione assogliale funzionalmente competente ( Marcus et al., 2006 ).

L’angiotensina II (Ang II), oltre ai suoi profondi effetti sulle malattie cardiovascolari, svolge anche un ruolo nell’infiammazione nel cervello che porta alla malattia neurodegenerativa ( Lanz. et al., 2010 ). La glicoproteina spike SARS-CoV-2 contiene un sito di clivaggio della furina unico non trovato in SARS-CoV, che consente all’enzima extracellulare furin di staccare il segmento S1 della glicoproteina spike e rilasciarlo in circolazione ( Letarov et al., 2021 ) . È stato dimostrato che S1 attraversa la barriera emato-encefalica nei topi ( Rhea et al., 2021). S1 contiene il dominio di legame del recettore che si lega ai recettori ACE2, disabilitandoli. Quando la segnalazione del ricevitore ACE2 è ridotta, la sintesi di Ang II è aumentata. I neuroni nel cervello possiedono recettori ACE2 che sarebbero suscettibili di interruzione da parte di S1 ​​rilasciato da esosomi contenenti spike-glicoproteina o cellule produttrici di spike-glicoproteina che avevano assorbito le nanoparticelle nei vaccini. Ang II migliora la segnalazione mediata da TLR4 nella microglia, inducendo l’attivazione della microglia e aumentando la produzione di specie reattive dell’ossigeno che portano al danno tissutale, all’interno del nucleo paraventricolare nel cervello ( Rodriguez-Perez et al., 2015 ).

Livelli elevati di Ang II sono un fattore causale nella neurodegenerazione del nervo ottico, causando neurite ottica, che può provocare una grave perdita irreversibile della vista ( Guo et al., 2017 ). Numerosi casi clinici hanno descritto casi di neuropatia ottica che compaiono poco dopo la vaccinazione mRNA per COVID-19 ( Maleki, 2021 ; Barone et al., 2021). Poco dopo la vaccinazione compaiono anche altre condizioni neurologiche debilitanti, in cui si sospetta una relazione causale. Un caso di studio con sede in Europa che ha monitorato i sintomi neurologici dopo la vaccinazione COVID-19 ha identificato 21 casi che si sono sviluppati entro una mediana di 11 giorni dopo la vaccinazione. I casi avevano diagnosi diverse tra cui trombosi del seno venoso cerebrale, malattie demielinizzanti del sistema nervoso, neuropatie periferiche infiammatorie, miosite, miastenia, encefalite limbica e arterite a cellule giganti ( Kaulen et al., 2021 ). Khayat-Khoei et al. (2021)descrivono una serie di casi di 7 pazienti, di età compresa tra 24 e 64 anni, che presentano malattia demielinizzante entro 21 giorni dalla prima o dalla seconda vaccinazione con mRNA. Quattro avevano una precedente storia di SM (controllata), mentre tre erano precedentemente sani.

La perdita dell’udito e l’acufene sono anche effetti collaterali ben noti di COVID-19. Un caso di studio ha coinvolto una serie di dieci pazienti COVID-19 che soffrivano di sintomi audiovestibolari come perdita dell’udito, disfunzione vestibolare e tinnito ( Jeong et al., 2021 ). Gli autori hanno dimostrato che il tessuto dell’orecchio interno umano esprime ACE2, furina e la proteasi transmembrana serina 2 (TMPRSS2), che facilita l’ingresso virale. Hanno anche dimostrato che SARS-CoV-2 può infettare specifici tipi di cellule dell’orecchio interno umano.

Un altro studio che ha valutato il potenziale del virus SARS-CoV-2 di infettare l’orecchio ha esaminato specificamente l’espressione del recettore ACE2 e degli enzimi furina e TM-PRSS2 di vari tipi di cellule nell’orecchio medio e interno dei topi. Hanno scoperto che ACE2 e furina erano “diffusamente presenti nella tromba di Eustachio, negli spazi dell’orecchio medio e nella coclea, suggerendo che questi tessuti sono suscettibili all’infezione da SARS-CoV-2”. ( Uranaka et al., 2021 ). L’acufene è positivamente associato all’ipertensione, che è indotta da livelli elevati di Ang II ( Rodrigues Figueiredo et al., 2016 ).

Il mal di testa è una reazione avversa molto comune ai vaccini mRNA COVID-19, in particolare per le persone che sono già suscettibili al mal di testa. In uno studio basato su un questionario che ha coinvolto 171 partecipanti, l’incidenza del mal di testa è risultata essere del 20,5% dopo il primo vaccino, salendo al 45,6% dopo il secondo colpo (Sekiguchi et al., 2021 ) . Un caso di studio ha descritto una donna di 37 anni che soffriva di un debilitante attacco di emicrania della durata di 11 giorni dopo il secondo vaccino mRNA Pfizer/BioNtech (Consoli et al ., 2021 ).

Gli steroidi sono spesso usati come terapia aggiuntiva per trattare l’emicrania ( Huang et al., 2013 ). Il desametasone e altri steroidi stimolano i recettori PPAR-α nel fegato attraverso il recettore degli steroidi, compensando così gli effetti della soppressione dell’IRF9 ( Lemberger et al., 1994 ). Una teoria per le origini dell’emicrania coinvolge l’elaborazione alterata dell’input sensoriale nel tronco cerebrale, principalmente nei neuroni del trigemino ( Dodick e Silberstein, 2006). Il nervo trigemino si trova in prossimità del nervo vago nel tronco encefalico, quindi gli esosomi che trasportano glicoproteine ​​a punta potrebbero facilmente raggiungerlo lungo la via vagale. La risonanza magnetica ha rivelato che i cambiamenti strutturali nel nervo trigemino che riflettono la microstruttura aberrante e la demielinizzazione sono una caratteristica delle persone che soffrono di frequenti emicranie ( Mungoven et al., 2020 ). Un potenziale fattore legato all’infezione da SARS-CoV-2 o alla vaccinazione con mRNA è un livello eccessivo di Ang II nel tronco encefalico a causa dell’inibizione della glicoproteina spike SARS-CoV-2 dei recettori ACE2. Gli ACE-inibitori e gli antagonisti del recettore Ang II sono diventati farmaci popolari per il trattamento dell’emicrania off-label ( Tronvik et al., 2003 ; Nandha e Singh, 2012). L’emicrania potrebbe quindi derivare sia dall’interruzione dei recettori ACE2 da parte della glicoproteina spike sia dalla distruzione della guaina mielinica che copre i nervi facciali critici attraverso una risposta infiammatoria della microglia e la perdita di sulfatide. La fonte di quella glicoproteina spike potrebbe essere esogena o endogena.

Paralisi di Bell

La paralisi di Bell è una comune neuropatia cranica che causa una paralisi facciale unilaterale. Anche negli studi clinici di fase III, la paralisi di Bell si è distinta, con sette casi comparsi nel braccio di trattamento rispetto a un solo caso nel gruppo placebo ( FDA, 2021a ; FDA, 2021b ). Un caso di studio riportato in letteratura ha coinvolto un uomo di 36 anni che ha sviluppato debolezza al braccio sinistro un giorno dopo la vaccinazione, progredendo in intorpidimento e formicolio al braccio e conseguenti sintomi della paralisi di Bell nei giorni successivi. Una causa comune della paralisi di Bell è la riattivazione dell’infezione da virus herpes simplex centrata attorno al ganglio genicolato ( Eviston et al., 2015 ). Questo, a sua volta, può essere causato dall’interruzione della segnalazione IFN di tipo I.

Miocardite

C’è stata una notevole attenzione da parte dei media dedicata al fatto che i vaccini COVID-19 causano miocardite e pericardite, con un aumento del rischio in particolare per gli uomini di età inferiore ai 50 anni ( Simone et al., 2021 ; Jain et al., 2021 ). È stato dimostrato che la glicoproteina spike SARS-CoV-2 danneggia i periciti cardiaci, che supportano i capillari e i cardiomiociti ( Avolio et al., 2020 ). La miocardite è associata all’attivazione piastrinica, quindi questo potrebbe essere un fattore in gioco nella risposta ai vaccini ( Weikert. et al., 2002 ). Tuttavia, un altro fattore potrebbe essere correlato agli esosomi rilasciati dai macrofagi che hanno assorbito le nanoparticelle di mRNA e i microRNA specifici trovati in quegli esosomi.

Uno studio che ha coinvolto pazienti affetti da grave malattia COVID-19 ha esaminato specificamente l’espressione dei microRNA circolanti rispetto ai pazienti affetti da influenza e ai controlli sani. Un microRNA che è stato costantemente sovraregolato in associazione con COVID-19 era il miR-155 e gli autori hanno suggerito che potrebbe essere un predittore di danno miocardico cronico e infiammazione. Al contrario, l’infezione influenzale non era associata ad una maggiore espressione di miR-155. Hanno concluso: “Il nostro studio ha identificato livelli significativamente alterati di miR [microRNA] associati al cuore nei pazienti con COVID-19, indicando una forte associazione di COVID-19 con disturbi cardiovascolari e rispettivi biomarcatori” ( Garg et al., 2021 ) .

Uno studio che ha confrontato 300 pazienti con malattie cardiovascolari con controlli sani ha mostrato un aumento statisticamente significativo dei livelli circolanti di miR-155 nei pazienti rispetto ai controlli. Inoltre, quelli con arterie più ristrette (secondo un punteggio Gensini) avevano livelli più alti rispetto a quelli con malattia minore ( Qiu e Ma, 2018 ).

È importante sottolineare che gli esosomi svolgono un ruolo nell’infiammazione in associazione con le malattie cardiache. Durante l’infarto del miocardio, il miR-155 è nettamente sovraregolato nei macrofagi nel muscolo cardiaco e rilasciato nell’ambiente extracellulare all’interno degli esosomi. Questi esosomi vengono consegnati ai fibroblasti e il miR-155 sottoregola le proteine ​​​​nei fibroblasti che proteggono dall’infiammazione e promuovono la proliferazione dei fibroblasti. La compromissione risultante porta alla rottura cardiaca ( Wang et al., 2017b ).

Abbiamo già discusso di come il segmento S1 della glicoproteina spike SARS-CoV-2 possa essere scisso dalla furina e rilasciato in circolazione. Si lega ai recettori ACE2 attraverso il suo dominio di legame del recettore (RBD) e questo inibisce la loro funzione. Poiché l’ACE2 degrada l’Ang II, la disattivazione dell’ACE2 porta direttamente alla sovraespressione dell’Ang II, aumentando ulteriormente il rischio di malattie cardiovascolari. La vasocostrizione indotta da AngII è un meccanismo indipendente per indurre un danno miocardico permanente anche quando non è presente un’ostruzione coronarica. Episodi ripetuti di costrizione improvvisa di un’arteria cardiaca dovuti all’Ang II possono alla fine portare a insufficienza cardiaca o morte improvvisa ( Gavras e Gavras, 2002 ). Sono stati descritti casi fatali di vaccinazione COVID-19 ( Choi et al., 2021 ; Verma et al., 2021).

La soppressione di ACE2 era già stata osservata negli studi sul virus SARS-CoV originale. Uno studio autoptico su pazienti che soccombono alla SARS-CoV ha rivelato un ruolo importante per l’inibizione dell’ACE2 nel promuovere il danno cardiaco. L’RNA virale SARS-CoV è stato rilevato nel 35% di 20 campioni di cuore umano sottoposti ad autopsia prelevati da pazienti deceduti. C’è stato un marcato aumento dell’infiltrazione di macrofagi associata a danno miocardico nei pazienti i cui cuori erano stati infettati da SARS-CoV. È importante sottolineare che la presenza di SARS-CoV nel cuore è stata associata a una marcata riduzione dell’espressione della proteina ACE2 ( Oudit et al., 2009 ).

Raccomando la diffusione capillare della (seconda) presente sintesi che potrete trovare in versione integrale direttamente da qui: “Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs

Traduzione e adattamento alla lingua italiana a cura di Davide Suraci. 7 Luglio 2023

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012513/

Soppressione immunitaria innata indotta dalle vaccinazioni a mRNA SARS-CoV-2

Stephanie SeneffGreg NighAnthony M. Kyriakopoulos, Peter A. McCullough

Traduzione e adattamento a cura di Davide Suraci

Introduzione

In questo documento, richiamiamo l’attenzione su tre aspetti molto importanti del profilo di sicurezza di queste vaccinazioni. Il primo è la soppressione, ampiamente documentata, dell’immunità innata principalmente attraverso la soppressione dell’IFN-α e la sua cascata di segnalazione associata. Questa soppressione avrà una vasta gamma di conseguenze tra cui, non ultima, la riattivazione di infezioni virali latenti e la ridotta capacità di combattere efficacemente future infezioni. Il secondo è la disregolazione del sistema sia per prevenire che per rilevare la trasformazione maligna geneticamente guidata all’interno delle cellule e il conseguente potenziale per la vaccinazione di promuovere tali trasformazioni. In terzo luogo, la vaccinazione con mRNA interrompe potenzialmente la comunicazione intracellulare effettuata dagli esosomi e induce le cellule che assorbono l’mRNA della glicoproteina spike a produrre alti livelli di esosomi che trasportano la glicoproteina spike, con conseguenze infiammatorie potenzialmente gravi.

Generalità

Le numerose alterazioni dell’mRNA del vaccino nascondono l’mRNA dalle difese cellulari e promuovono un’emivita biologica più lunga e un’elevata produzione di proteina spike. Tuttavia, la risposta immunitaria al vaccino è molto diversa da quella a una vera una vera infezione da SARS-CoV-2. In questo documento, presentiamo le prove che la vaccinazione induce una profonda compromissione della segnalazione dell’interferone di tipo I, che ha diverse conseguenze negative per la salute umana. Le cellule immunitarie che hanno assorbito le nanoparticelle del vaccino rilasciano in circolazione un gran numero di esosomi contenenti proteine ​​​​spike insieme a microRNA (miRNA) critici che inducono una risposta di segnalazione nelle cellule riceventi in siti distanti. Identifichiamo anche potenziali profondi disturbi nel controllo normativo della sintesi proteica e dei sistemi di controllo del cancro. Questi disturbi hanno potenzialmente un nesso causale con la malattia neurodegenerativa, la miocardite, la trombocitopenia immunitaria, la paralisi di Bell, le malattie del fegato, l’immunità adattativa compromessa, la risposta al danno del DNA compromessa e la tumorigenesi. Mostriamo prove dal database VAERS a sostegno della nostra ipotesi. Riteniamo che una valutazione completa del rapporto rischio/beneficio dei vaccini a mRNA li metta in discussione come contributori positivi alla salute pubblica.

Possibili “paths” di induzione di patologie da vaccini a mRNA.

Questo paper riassume l’attuale letteratura sull’mRNA e sui suoi effetti sulla biologia molecolare all’interno delle cellule umane. Riconosciamo che esiste un’ampia gamma di opinioni in questa fase nascente della tecnologia dell’mRNA. Dato il suo diffuso dispiegamento prima del lavoro di base su tanti dei meccanismi di cui discutiamo qui, riteniamo che il nostro lavoro sia importante per fornire un’ampia comprensione delle revisioni presenti e future relative al fiorente lavoro molecolare preclinico svolto in quest’area.

In questo articolo, viene analizzata la letteratura scientifica che suggerisce che la vaccinazione con un vaccino a mRNA avvia una serie di eventi biologici che non solo sono diversi da quelli indotti dall’infezione, ma sono in molti modi dimostrabilmente controproducenti per la competenza immunitaria sia a breve che a lungo termine e normale funzione cellulare. Queste vaccinazioni hanno ora dimostrato di sottoregolare i percorsi critici relativi alla sorveglianza del cancro, al controllo delle infezioni e all’omeostasi cellulare. Introducono nel corpo materiale genetico altamente modificato. Una prestampa ha rivelato una notevole differenza tra le caratteristiche della risposta immunitaria a un’infezione da SARS-CoV-2 rispetto alla risposta immunitaria a un vaccino mRNA contro COVID-19 (Ivanova et al., 2021).

L’analisi dell’espressione genica differenziale delle cellule dendritiche periferiche ha rivelato una drammatica sovraregolazione degli interferoni di tipo I e II (IFN) nei pazienti con COVID-19, ma non nei vaccinati.

Un’osservazione notevole che hanno fatto è stata che c’era un’espansione delle cellule staminali e progenitrici ematopoietiche circolanti (HSPC) nei pazienti COVID-19, ma questa espansione era notevolmente assente dopo la vaccinazione. Anche una sorprendente espansione dei plasmablasti circolanti osservata nei pazienti COVID-19 non è stata osservata nei vaccinati. Tutte queste osservazioni sono coerenti con l’idea che i vaccini anti-COVID-19 sopprimono attivamente la segnalazione IFN di tipo I, come discuteremo di seguito. In questo documento ci concentreremo ampiamente, anche se non esclusivamente, sulla soppressione dell’IFN di tipo I indotta dalla vaccinazione e sulla miriade di effetti a valle che ciò ha sulla relativa cascata di segnalazione.

I vaccini a mRNA prodotti da Pfizer/BioNTech e Moderna sono stati visti come un aspetto essenziale degli sforzi per controllare la diffusione di COVID-19…

I governi sono reticenti a considerare la possibilità che queste “vaccinazioni” a mRNA possano causare danni in modi inaspettati, e soprattutto che tali danni possano persino superare i benefici ottenuti nella protezione da malattie gravi.

È ora chiaro che gli anticorpi indotti dai vaccini svaniscono in appena 3-10 settimane dopo la seconda dose (Shrotri et al., 2021), tanto che alle persone viene consigliato di farsi iniezioni di richiamo a intervalli regolari (Centers for Disease Controllo e prevenzione, 2021b). È anche diventato evidente che varianti in rapida evoluzione come il ceppo Delta e ora Omicron stanno mostrando resistenza agli anticorpi indotti dai vaccini, attraverso mutazioni nella proteina spike (Yahi et al., 2021). Inoltre, è diventato chiaro che i vaccini non prevengono la trasmissione della malattia, ma si può solo affermare che riducano la gravità dei sintomi (Kampf, 2021a). Uno studio che ha confrontato i tassi di vaccinazione con i tassi di infezione da COVID-19 in 68 paesi e 2947 contee negli Stati Uniti all’inizio di settembre 2021, non ha trovato alcuna correlazione tra i due, suggerendo che questi vaccini non proteggono dalla diffusione della malattia (Subramanian e Kumar, 2947). Per quanto riguarda la gravità dei sintomi, anche questo aspetto comincia a essere messo in dubbio, come dimostra un focolaio in un ospedale israeliano che ha portato alla morte di cinque pazienti ospedalieri completamente vaccinati (Shitrit et al., 2021). Allo stesso modo, Brosh-Nissimov et al. (2021) hanno riferito che 34/152 (22%) dei pazienti completamente vaccinati tra 17 ospedali israeliani sono morti di COVID-19.

La crescente evidenza che i vaccini fanno poco per controllare la diffusione della malattia e che la loro efficacia diminuisce nel tempo rende ancora più imperativo valutare il grado in cui i vaccini potrebbero causare danni. Che le vaccinazioni con mRNA della proteina spike modificata da SARS-CoV-2 abbiano impatti biologici è fuori discussione. Qui tentiamo di distinguere quegli impatti da vaccini a mRNA da quelli derivanti dall’infezione naturale e di stabilire un quadro meccanicistico che colleghi quegli impatti biologici unici alle patologie ora associate alla vaccinazione. Riconosciamo che i collegamenti causali tra gli effetti biologici avviati dalla vaccinazione mRNA e gli esiti avversi non sono stati stabiliti nella grande maggioranza dei casi.

Il Ruolo degli IFN di Tipo 1

Gli IFN di tipo I svolgono un ruolo importante nella risposta immunitaria a molteplici fattori di stress. Infatti, hanno goduto di un valore terapeutico clinico come opzione terapeutica per una varietà di malattie e condizioni, tra cui infezioni virali, tumori solidi, disturbi mieloproliferativi, neoplasie ematopoietiche e malattie autoimmuni come la sclerosi multipla (Passegu e Ernst, 2009).

Come gruppo, gli IFN svolgono ruoli estremamente complicati e pleiotropici che sono coordinati e regolati attraverso l’attività della famiglia dei fattori regolatori IFN, o IRF (Kaur e Fang, 2020). IRF9 è più direttamente coinvolto nell’immunità antivirale e antitumorale e nella regolazione genetica (Alsamman e El-Masry, 2018; Huang et al., 2019; Zitvogel et al., 2015).

Strettamente correlate a questo sono le cellule dendritiche plasmacitoidi (pDC), un raro tipo di cellula immunitaria che circola nel sangue ma migra verso gli organi linfoidi periferici durante un’infezione virale. Rispondono a un’infezione virale aumentando nettamente la produzione di IFN di tipo I. L’IFN-α rilasciato nei linfonodi induce le cellule B a differenziarsi in plasmablasti. Successivamente, l’interleuchina-6 (Il-6) induce i plasmablasti ad evolversi in plasmacellule che secernono anticorpi (Jego et al., 2003). Pertanto, gli IFN svolgono un ruolo fondamentale sia nel controllo della proliferazione virale sia nell’induzione della produzione di anticorpi. Centrale sia per l’immunità antivirale che per quella antitumorale, l’IFN-α è prodotto da macrofagi e linfociti quando viene colpito da infezioni virali o batteriche o incontra cellule tumorali (De Andrea et al., 2002). Il suo ruolo come potente terapia antivirale è stato riconosciuto nel trattamento delle complicanze del virus dell’epatite C (Feng et al., 2012), dell’infezione da citomegalovirus (Delannoy et al., 1999), dell’infezione cronica da virus ebola attivo (Sakai et al., 1998 ), malattia infiammatoria intestinale associata a infezione da herpes virus (Ruther et al., 1998) e altri.

Alterazione del Signaling Antitumorale dell’IFN-1

La segnalazione alterata dell’IFN di tipo I è collegata a molti rischi di malattia, in particolare il cancro, poiché la segnalazione dell’IFN di tipo I sopprime la proliferazione sia dei virus che delle cellule tumorali arrestando il ciclo cellulare, in parte attraverso la sovraregolazione di p53, un gene oncosoppressore e varie cicline -inibitori della chinasi dipendenti (Musella et al., 2017; Matsuoka et al., 1998). L’IFN-α induce anche la presentazione dell’antigene di classe 1 di maggiore istocompatibilità (MHC) da parte delle cellule tumorali, facendole riconoscere più facilmente dal sistema di sorveglianza del cancro (Heise et al., 2016; Sundstedt et al., 2008). La gamma di effetti antitumorali avviati dall’espressione di IFN-α è sbalorditiva e si verifica attraverso meccanismi sia diretti che indiretti. Gli effetti diretti includono l’arresto del ciclo cellulare, l’induzione della differenziazione cellulare, l’inizio dell’apoptosi, l’attivazione di natural killer e cellule T CD8+ e altri (Schneider et al., 2014).

“Vaccini” a mRNA Non Conformi al Controllo di Qualità Cellulare

Questo studio (McKernan et al., 2021) ha dimostrato che esiste un significativo arricchimento del contenuto di GC (Guanina e Citosina) negli mRNA dei vaccini (53% in BNT162b2 e 61% in Moderna mRNA-1273) rispetto all’mRNA nativo di SARS-CoV-2 (36%). Il contenuto arricchito di GC degli mRNA è il risultato dell’ottimizzazione del codone eseguita durante lo sviluppo degli mRNA utilizzati nei vaccini SARS-CoV-2, apparentemente senza determinare l’effetto sulle strutture secondarie, in particolare la formazione del quadruplex della guanina (G quadruplex).

Non Ottimizzazione dei Codoni e Produzione di Proteine Aliene

L’ottimizzazione del codone descrive la produzione di polipeptidi e proteine ​​sintetici ottimizzati per il codone utilizzati nelle terapie biotecnologiche (come gli mRNA sintetici utilizzati per la vaccinazione SARS-CoV-2). Le assegnazioni alterate del codone all’interno del modello di mRNA aumentano notevolmente la quantità di polipeptidi e/o proteine ​​prodotte (Mauro e Chappell, 2014). La sostituzione del codone sinonimo comporta anche un cambiamento nei ruoli normativi e strutturali multifunzionali delle proteine ​​risultanti (Shabalina et al., 2013). Per questo motivo, l’ottimizzazione del codone è stata messa in guardia a causa dei suoi conseguenti cambiamenti che causano perturbazioni nella conformazione secondaria dei prodotti proteici con effetti potenzialmente devastanti sulla loro risultante immunogenicità, efficacia e funzione (Zhou et al., 2013; Agashe et al., 2013 ). In particolare, varie malattie umane sono il risultato di polimorfismi nucleotidici sinonimi (McCarthy et al., 2017).

Implicazioni Inquietanti – Compromissione dei Blocchi Protettivi Anticancro

La glicoproteina spike SARS-CoV-2 modifica la produzione di esosomi della cellula ospite. La trasfezione delle cellule con il gene della proteina spike e la successiva produzione della proteina spike SARS-CoV-2 si traduce in quelle cellule che generano esosomi contenenti microRNA che sopprimono la produzione di IRF9 mentre attivano una serie di trascrizioni geniche pro-infiammatorie (Mishra e Banerjea, 2021). Poiché questi vaccini sono specificamente progettati per indurre una produzione elevata e continua di glicoproteine ​​spike SARS-CoV-2, le implicazioni sono inquietanti. Come descritto sopra, l’inibizione di IRF9 sopprimerà TRAIL(Trans-Allegheny Interstate Line) e tutti i suoi effetti regolatori e a valle che inducono l’apoptosi. Ci si dovrebbe anche aspettare che la soppressione dell’IRF9 tramite microRNA esosomiale comprometta gli effetti protettivi contro il cancro dell’attività del gene BRCA2, che dipende da quella molecola per la sua attività come descritto sopra. I tumori associati a BRCA2 includono cancro al seno, alle tube di Falloppio e alle ovaie per le donne, cancro alla prostata e al seno per gli uomini, leucemia mieloide acuta nei bambini e altri (National Cancer Institute, 2021).

Segnalazione apoptotica indotta da TRAIL. TRAIL avvia la morte cellulare legandosi ai recettori della morte proapoptotici DR4 o DR5 che colocalizza i loro domini di morte intracellulare.

È stato anche dimostrato che la vaccinazione sopprime sia IRF7 che STAT2 (Liu et al., 2021). Ci si può aspettare che ciò interferisca con gli effetti protettivi contro il cancro di BRCA1 come descritto sopra. I tumori associati all’attività BRCA1 compromessa comprendono il cancro al seno, all’utero e alle ovaie nelle donne; cancro alla prostata e al seno negli uomini; e un modesto aumento del cancro al pancreas sia per gli uomini che per le donne (rischio di cancro e gene BRCA1, 2021).

Riattivazione della Varicella-Zoster

La segnalazione del recettore IFN di tipo I nelle cellule T CD8+ è fondamentale per la generazione di cellule effettrici e di memoria in risposta a un’infezione virale (Kolumam et al., 2005). Le cellule T CD8+ possono bloccare la riattivazione dell’infezione latente da herpes nei neuroni sensoriali (Liu et al., 2000). Se la segnalazione dell’IFN di tipo I è compromessa, come accade dopo la vaccinazione ma non dopo l’infezione naturale da SARS-CoV-2, anche la capacità delle cellule T CD8+ di tenere sotto controllo l’herpes sarebbe compromessa. Potrebbe essere questo il meccanismo al lavoro in risposta ai vaccini?

Trombocitopenia Immunitaria

La trombocitopenia immunitaria è una malattia autoimmune, in cui il sistema immunitario attacca le piastrine circolanti. La porpora trombocitopenica immunitaria (ITP) è stata associata a diverse vaccinazioni, tra cui morbillo, parotite, rosolia (MMR), epatite A, varicella, difterite, tetano, pertosse (DPT), poliomielite orale e influenza (Perricone et al., 2014). Sebbene vi sia un’ampia consapevolezza che i vaccini basati sul DNA dell’adenovirus possono causare trombocitopenia trombotica immunitaria indotta da vaccino (VITT) (Kelton et al., 2021), i vaccini a mRNA non sono privi di rischi per la VITT, poiché sono stati pubblicati casi di studio che documentano tale eventi, inclusa la trombosi del seno venoso cerebrale mortale e fatale (Lee et al., 2021; Akiyama et al., 2021; Atoui et al., 2022; Zakaria et al., 2021). Si ritiene che il meccanismo coinvolga gli anticorpi VITT che si legano al fattore piastrinico 4 (PF4) e formino immunocomplessi che inducono l’attivazione piastrinica. Le successive cascate di coagulazione causano la formazione di microcoaguli diffusi nel cervello, nei polmoni, nel fegato, nelle gambe e altrove, associati a un drastico calo della conta piastrinica (Kelton et al., 2021). La reazione al vaccino è stata descritta come molto simile alla trombocitopenia indotta da eparina (HIT), tranne per il fatto che la somministrazione di eparina non è coinvolta (Cines e Bussel, 2021). (Fine prima parte)

Raccomando la diffusione capillare della presente sintesi che potrete trovare in versione integrale direttamente da qui: “Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs

Danni Neurologici da Vaccini a mRNA…

☣️?⚠️ Del rischio di danni neurologici conseguenti alle vaccinazioni SarS-CoV-2 ne avevamo scritto oltre un anno fa da questa pagina. Adesso ne abbiamo conferma da uno studio che individua i “paths” genetico-biochimici della degenerazione. La recente scoperta dell’integrazione del genoma di SARS-CoV-2 attraverso un meccanismo che coinvolge LINE-1 o polimerasi theta solleva grande preoccupazione per quanto riguarda la possibile incorporazione duratura indesiderata di sequenze di proteine spike nel genoma umano. Inoltre, la serie di casi clinici che descrivono disturbi neurologici diagnosticati, aventi come unico fattore di causalità comune la vaccinazione con l’mRNA SARS-CoV-2, evidenzia senza dubbio la potenziale associazione dell’attivazione del retrotrasposone all’emergere di queste malattie. L’interferenza del DNA umano da parte di mRNA sintetici nei vaccini è più di una semplice possibilità teorica.

⛔️⚠️? La trascrizione inversa del codice dal vaccino COVID-19 L’mRNA è stata dimostrata in linee cellulari di epatoma umano, sebbene sia necessaria la conferma del risultato da parte di un gruppo indipendente. Poiché le loro sequenze codificate sono specifiche per il picco di proteine SARS-CoV-2 e queste possono anche essere integrate nel DNA umano, il risultante della patogenesi dovuta alla vaccinazione molecolare richiede una valutazione esplicita attraverso la ricerca sulla genotossicità. Oltre al potenziale patogenetico di DNA endogenamente codificato dalle proteine spike, abbiamo dimostrato che l’attivazione delle reti enzimatiche cellulari che svolgono questa integrazione del DNA comporta il loro potenziale patogeno distinto e peculiare. Questi rischi sono si prevede che saranno più elevati in specifiche popolazioni vulnerabili, vale a dire individui durante la fase di sviluppo (bambini) e pazienti affetti da malignità, malattie autoimmuni, malattie cardiovascolari e neurologiche, e malattie genetiche.

‼️⚠️? Riconosciamo che è speculativo suggerire che l’mRNA del vaccino potrebbe essere in grado di avviare l’ampia gamma di eventi patologici che abbiamo descritto. Tuttavia, dato il potenziale ampiamente documentato per entrambi gli RNA endogeno (retrovirale umano) ed esogeno (virale) di innescare questi eventi, delle indagini pertinenti sono urgentemente necessarie, soprattutto considerando il gran numero di individui a cui è stato somministrato uno o più prodotti a base di mRNA che codificano per la proteina spike SARS-CoV-2. Studio in versione integrale e originale: https://www.hilarispublisher.com/open-access/potential-mechanisms-for-human-genome-integration-of-genetic-code-from-sarscov2-mrna-vaccination-implications-for-diseas.pdf

Vaccini a mRNA e Impatto Biologico…

Da molte parti viene detto spesso che i “vaccini” a mRNA potrebbero rivelarsi catastrofici senza una prolungata, adeguata ed estesa sperimentazione...

Come per tutti i «vaccini» su base antigenica ricombinante e/o virale «viva» attenuata, che hanno preceduto i cosiddetti “vaccini” a mRNA, anche per questi ultimi la diffusione massale è iniziata senza nessuna garanzia in termini di sicurezza, efficacia ed efficienza. Gli studi preliminari sui vaccini presentano numerosi difetti di ordine progettuale, metodologico e procedurale. I criteri adottati per valutare un vaccino sono finalizzati ad ottenere dei risultati che non adombrino i processi di omologazione e di immissione sul mercato gestiti dalle agenzie regolatrici. Ne ho scritto ampiamente nel capitolo XIII° – La Sicurezza dei Vaccini– del dossier “Operazione Corona”.

Tuttavia, nelle considerazioni che seguiranno, non si intende evidenziare solo il rischio collegato alla sperimentazione affrettata, quanto quello relativo ad una serie di aspetti che vengono sistematicamente ignorati a livello progettuale, dei protocolli sperimentali, delle procedure di approvazione da parte delle agenzie.

Esistono rischi molto reali associati ai vaccini a mRNA, tra cui infiammazioni potenziate e le reazioni autoimmuni, in cui le cellule del corpo vengono inavvertitamente programmate per attaccare le proteine critiche necessarie per la salute normale (analogamente agli ormoni).

Mossi dalla logica del profitto, gli enti regolatori e i centri di ricerca sono portati a saltare molti passaggi critici nel controllo di qualità e negli studi clinici. Questa accelerazione potrebbe comportare delle conseguenze catastrofiche – effetti collaterali non intenzionali – se a tali «vaccini» viene concessa l’approvazione per una diffusione non preceduta da adeguati studi clinici a lungo termine.

I «vaccini» a mRNA potrebbero essere sfruttati fraudolentemente per renderli idonei ad attivare oppure a sopprimere delle funzioni fisiologiche critiche negli esseri umani. Ciò è simile in effetti alla tecnologia di “interferenza dell’RNA virale” che è una biotecnologia in grado di silenziare i geni, studiata per essere utilizzata come “pesticida” contro gli insetti nelle colture. Di esempi di questo genere ce ne sono già. https://pubmed.ncbi.nlm.nih.gov/25867635/

Sebbene i meccanismi dei vaccini a mRNA e della tecnologia dell’interferenza dell’RNA siano molto diversi, si possono ottenere molti degli stessi risultati come l’infertilità indotta o la morte in organismi mirati, che potrebbero includere gli esseri umani. Tecnicamente, questo potrebbe anche essere sfruttato per mirare a specifici sottogruppi genetici di esseri umani.

Attualmente la terapia genica impiega i vettori a mRNA per il trattamento del cancro nella medicina personalizzata, in cui i “vaccini” (che non possono essere definiti tecnicamente come tali) sono personalizzati per “insegnare” al sistema immunitario del corpo ad attaccare e uccidere specificatamente le cellule tumorali.

La valutazione del rischio

Un ragionevole rischio di tolleranza per gli effetti collaterali di un vaccino a mRNA dovrebbe essere proporzionale al rischio di mortalità dovuto all’agente patogeno che il vaccino sta tentando di prevenire. Se si considera che il cancro al IV° stadio uccide l’80% dei pazienti e che una terapia genica antitumorale con mRNA personalizzato recupera il 50% dei pazienti uccidendone il 5%, il rapporto tra vite salvate e pazienti uccisi è di 10: 1, il che probabilmente potrebbe essere un rischio ragionevole da assumere. Un vaccino genico a mRNA contro il coronavirus, essendo somministrato su soggetti sani con un rischio di mortalità molto basso, se uccidesse 1 su 1.000 di quelle persone, potrebbe causare dei tassi di mortalità molto più elevati rispetto a quelli provocati dal patogeno contro cui il vaccino è diretto.

Come funzionano i “vaccini” a mRNA … suggerimento: non sono affatto vaccini..

Il perché di questa distinzione è da ricercarsi in una differenza sostanziale: mentre nei vaccini veri e propri esiste l’antigene o il patogeno che dovrebbe stimolare la risposta immunitaria (produzione di anticorpi) da parte del soggetto, nell’approccio dei “vaccini” a mRNA Il termine “vaccino” è in realtà un termine improprio.

L’mRNA non infetta il corpo con un virus indebolito (“attenuato”), ma piuttosto “istruisce” le cellule del corpo a sintetizzare delle molecole specifiche che inducono il sistema immunitario reagire, producendo anticorpi, come se fosse realmente presente un agente patogeno. Nel contesto dei vaccini, queste molecole sono chiamate “antigeni” e quando questi antigeni vengono prodotti all’interno delle cellule del corpo e successivamente presentati alla superficie cellulare, il sistema immunitario, in circostanze ideali, vede questi antigeni come invasori e costruisce un sistema immunitario attivo come risposta per eliminare quegli antigeni.

Se gli antigeni sono strutturati in un modo che assomiglia al patogeno virale – come il coronavirus di Wuhan – la risposta immunitaria del corpo dovrebbe offrire teoricamente una protezione contro il coronavirus vero e proprio.

Sintesi cellulare indotta da mRNA della proteina spike.

Con i vaccini a mRNA, ciò che viene iniettato nel corpo non è un virus indebolito o degli antigeni selezionati ma, piuttosto, delle istruzioni di codifica delle proteine che istruiscono le cellule del corpo sul “come” sintetizzare gli antigeni in modo autonomo. Questo processo è chiamato “traduzione”.

Come spiega Curevac sul suo sito web:

“…Con la nostra tecnologia a mRNA, istruiamo il corpo umano ad attivare il proprio meccanismo di difesa. Per questo, usiamo il mRNA che contiene le istruzioni necessarie per produrre le proteine antigieniche. Programmiamo questa sostanza messaggera con le informazioni specifiche per la sintesi di una proteina del coronavirus e la iniettiamo nel corpo umano. Il corpo riconosce la proteina prodotta dalle nostre cellule come qualcosa di sconosciuto e attiva le sue cellule immunitarie per produrre anticorpi e cellule T contro di essa. In questo modo, imitiamo l’infezione virale naturale e attiviamo il sistema di difesa endogeno…”

In teoria, i vaccini a mRNA offrono straordinari vantaggi rispetto ai vaccini tradizionali. Sono più sicuri da produrre e molto più veloci da realizzare. Sono puliti (ovvero non conterranno virus latenti trovati negli animali utilizzati per coltivare vaccini tradizionali) e in genere non richiedono adiuvanti o altri additivi tossici per funzionare come previsto. Inoltre, possono indirizzare il corpo a produrre quasi tutte le proteine immaginabili. È così che funziona in teoria, ovviamente.

Ma presentano anche enormi rischi e se la distribuzione dei vaccini a mRNA è affrettata, i risultati potrebbero essere catastrofici. Inoltre, i vaccini a mRNA possono essere utilizzati in modo dannoso per indurre deliberatamente il corpo umano ad attaccare le proprie funzioni critiche come la fertilità, la funzione neurologica, la riparazione cellulare e altri processi critici. Ciò è spiegato più dettagliatamente di seguito.

Il seguente video, da CureVac, è in realtà una panoramica abbastanza buona della piattaforma mRNA e delle sue promesse. Si tratta di un video promozionale notevolmente semplificato e, ovviamente, non si concentra sui potenziali rischi o effetti collaterali:

Sei rischi dei vaccini a mRNA

Il principale problema con i vaccini a mRNA è che la biochimica umana è straordinariamente complessa. La sintesi da parte delle cellule del corpo di decine di migliaia di proteine diverse è notevolmente delicata e gli equilibri che si instaurano tra di esse molto facili da alterare.

Le proteine non sono solo strutture aventi esclusivamente una funzione fisica (come il tessuto muscolare o scheletrico) ma sono anche vettori di segnali biochimici (analogamente agli ormoni), vettori di traslocazione, catalizzatori enzimatici, anticorpi e molti altri tipi di molecole fondamentali per il mantenimento dell’omeòstasi cellulare, tissutale, organica, di apparato, di sistema, dell’intero organismo.

L’iniezione nel corpo di filamenti di mRNA – che sono sostanzialmente delle istruzioni di sintesi proteica – potrebbe teoricamente scatenare conseguenze catastrofiche non desiderate nella fisiologia cellulare, che non escluderebbero la creazione di circuiti di feedback auto-rinforzanti distruttivi in grado di interferire con la sintesi proteica deprimendola o, al contrario, amplificandola e ponendola così fuori controllo.

Questi effetti collaterali possono potenzialmente portare ad almeno sei esiti negativi:

1) Insorgenza improvvisa di patologie autoimmuni che inducono il sistema immunitario del corpo ad attaccare le proprie strutture.

2) Induzione di uno stato infiammatorio diffuso a livello di singoli organi o a livello multiorgano, con conseguente risposta iperinfiammatoria in soggetti particolarmente suscettibili oppure inducendo tale stato anche in soggetti non predisposti, con effetti secondari come danni neurologici o cancro. Questo fenomeno si chiama “risposta immunitaria potenziata” e potrebbe essere amplificata ulteriormente anche in previsione dell’impiego degli adiuvanti vaccinali a base RNA (immunopotenzianti). Non bisogna dimenticare infatti che “l’RNA imita le infezioni virali e induce risposte immunitarie considerevolmente forti.”

https://www.researchgate.net/publication/331600637_RNA-based_adjuvants_and_their_immunoenhancing_effect_on_antiviral_vaccines

3) Un rischio maggiore di coagulazione del sangue in risposta ai filamenti di miRNA (micro-RNA)circolanti nel torrente circolatorio, al di fuori delle cellule. Questo può portare a episodi potenzialmente fatali di ictus o gravi eventi cardiovascolari. In questo studio del 2009 (Expression Profile of MicroRNAs in Young Stroke Patients): “Dimostriamo che i miRNA del sangue periferico e i loro profili possono essere sviluppati come biomarcatori nella diagnosi e nella prognosi dell’ictus ischemico cerebrale. I miRNA disregolati sono stati rilevabili anche dopo diversi mesi dall’inizio dell’ictus in quelli che di solito sono considerati pazienti neurologicamente stabili.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007689

4) Interferenza della risposta immunitaria dovuta alla presenza di frammenti di RNA non intenzionali tradotti in proteine non intenzionali, che porta a una vasta gamma di possibili esiti negativi, comprese carenze molecolari che possono provocare varie malattie e sindromi tra cui disturbi ormonali/endocrini, infertilità, malattie cardiovascolari, disturbi neurologici e molti altri.

5) I vaccini a mRNA autoreplicanti, sia pure parzialmente, utilizzano dei componenti virali. Ci chiediamo: essi possono essere regolati dai normali fisiologismi molecolari? Come si inseriscono nei complessi fisiologismi di autoregolazione? Si ha l’impressione che la progettazione di questo tipo di vaccini non tenga conto di questo importante aspetto. Ciò potrebbe teoricamente accadere quando gli snippet di mRNA vengono trasferiti nelle cellule tramite particelle di replicone virale (VRP), ad esempio, o utilizzando altri metodi di consegna virale che si basano su un meccanismo di replicazione virale.

6) Potenziale formazione di filamenti di miRNA (micro-RNA) come processo di scarto della biosintesi della proteina spike o di altre alterazioni conseguenti. In uno studio (MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes) è stato dimostrato che la presenza di questi frammenti è associata a numerose forme di cancro.

https://pubmed.ncbi.nlm.nih.gov/19347736/

Quattro Domande sui Vaccini a mRNA

Oltre a questi sei rischi principali, ci sono quattro domande di enorme importanza sui vaccini a mRNA.

1) Cosa succede se il ripiegamento proteico desiderato va storto? Senza un corretto ripiegamento, le proteine non raggiungono mai la funzionalità desiderata. Nel caso degli antigeni, un piegamento improprio renderebbe la struttura inutilizzabile e non conferirebbe immunità. La traduzione dell’mRNA in una proteina è solo una parte del processo di costruzione di una proteina. Il “ripiegamento” della proteina è un’altra grande parte. Forse questo è già stato risolto dagli scienziati molto capaci che lavorano su questa piattaforma, ma è una domanda che merita un’ulteriore esplorazione.

2) In che modo gli antigeni prodotti all’interno della cellula vengono efficacemente trasportati alla membrana esterna della cellula? Questa risposta sembra ricevere una risposta sicura dagli esperti in questo settore, ma solleva un secondo giro di domande sulla permeabilità della membrana cellulare che sappiamo già essere alterata dall’esposizione elettromagnetica da fonti come i segnali 5G delle torri cellulari. In particolare, i ricercatori del «vaccino» mRNA sono ben consapevoli del fenomeno noto come “elettroporazione”, perché viene utilizzato insieme agli approcci come “pistola genetica” nel tentativo di inserire carichi utili di RNA autoreplicante nelle cellule, come si può leggere in questo studio sui vaccini a mRNA.

https://www.pnas.org/content/109/36/14604

3) Cosa succede se gli snippet di mRNA si frammentano e vengono fornite solo delle istruzioni parziali ai ribosomi, con conseguente traduzione di proteine parziali? Ciò potrebbe, in teoria, indurre il corpo a vedere queste proteine parziali come invasori patogeni, anche quando porzioni di quelle proteine potrebbero corrispondere a molecole critiche di cui il corpo ha bisogno, come ormoni o enzimi. Il risultato finale potrebbe essere che il sistema immunitario si attivi contro le molecole o le cellule necessarie del corpo. In altre parole, questo è lo scenario della malattia autoimmune menzionato nell’elenco sopra e apre un vaso di Pandora di conseguenze catastrofiche che potrebbero essere impossibili da prevedere. Nello studio di cui al link qui sotto, viene evidenziato che: “La presenza di annotazioni di domini parziali nelle proteine dovrebbe sollevare la preoccupazione che la previsione del gene della proteina possa essere incompleta. In generale, i domini proteici possono essere considerati i mattoni strutturali delle proteine.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443539/

4) In che modo i vaccini a mRNA possono essere utilizzati come piattaforma per raggiungere gli obiettivi globalisti di spopolamento tramite l’infertilità forzata? Se l’mRNA può codificare per la sintesi di qualsiasi proteina desiderata, è semplice utilizzare la stessa piattaforma per costruire degli antigeni simili a ormoni che “insegnino” al corpo umano ad attaccare ormoni specifici necessari per la riproduzione e la gestazione.Questo, a sua volta, porterebbe teoricamente a una diffusa infertilità femminile, raggiungendo così gli obiettivi di spopolamento globalista attraverso la “sterilità autoimmune” indotta dal vaccino.

https://vaccines.news/2017-11-10-bombshell-science-paper-documents-the-depopulation-chemical-covertly-spiked-into-vaccines.html

I produttori di vaccini a mRNA dicono senza farsi pervadere dal minimo dubbio che tutti questi rischi possono essere mitigati. Anche se questo potrebbe essere vero dopo forse 40 anni di ricerca e prove, la scarsissima conoscenza della complessità della biologia cellulare richiede ulteriori ricerche a lungo termine su questa piattaforma – forse 25 anni in più – non un vaccino affrettato che salta le prove sugli animali e comprime molti anni di tipica ricerca sulla sicurezza in pochi mesi.

È importante sottolineare il fatto che molti degli effetti collaterali teorici di un vaccino a mRNA non diventerebbero evidenti fino a mesi o anni dopo l’iniezione iniziale. È probabile che questi eventi avversi siano sistemici, non acuti e non diventerebbero evidenti negli studi clinici a breve termine. Questo è un problema critico da comprendere, dal momento che i vaccini a mRNA sono in questo momento sottoposti a prove cliniche a breve termine, lasciando aperta la possibilità di effetti collaterali indesiderati a lungo termine che non erano stati previsti dai produttori di vaccini o dai regolatori della FDA.

Maggiori dettagli sui possibili rischi dei vaccini a mRNA.

Ecco un riepilogo della situazione attuale con i vaccini a mRNA, per gentile concessione dell’Università di Cambridge e della sua phg Foundation:

https://www.phgfoundation.org/briefing/rna-vaccines

«..C’è ancora molto lavoro da fare prima che i «vaccini» a mRNA possano diventare dei trattamenti standard: nel frattempo, abbiamo bisogno di una migliore comprensione dei loro potenziali effetti collaterali e di maggiori prove della loro efficacia a lungo termine.

In altre parole, i vaccini a mRNA mantengono una promessa molto alta a lungo termine, ma non sono neanche lontanamente pronti per la produzione e l’amministrazione commerciale su larga scala in miliardi di persone, anche se questo sembra essere l’obiettivo della società Moderna e di coloro che spingono per una rapida risposta del vaccino alla pandemia di coronavirus…»

Alcuni dei rischi noti dei vaccini a mRNA includono…

– La possibilità che frammenti di mRNA possano, attraverso un processo attualmente sconosciuto, entrare nel nucleo cellulare e alterare il genoma dell’ospite. Interazioni tra il normale mRNA cellulare e il DNA nucleare esistono e non devono essere ignorate. Le aziende produttrici di vaccini a mRNA attualmente affermano che ciò è impossibile, ma la storia della medicina è piena di esempi di scienziati arroganti che fanno ipotesi catastrofiche sul corpo umano che si sono rivelate eccessivamente ottimiste.

– Poiché i frammenti di mRNA codificano le istruzioni per la sintesi proteica nel corpo, i vaccini a mRNA potrebbero essere utilizzati per iniettare nel corpo carichi utili “cavallo di Troia” di altre proteine che hanno lo scopo di eseguire una lunga lista di nefasti effetti negativi sugli ospiti umani, inclusa l’infertilità . Questo è fondamentale in quanto i vaccini approvati somministrati a giovani donne in Africa sono già stati trovati per essere veicolati con HCG, un ormone inducente infertilità e progettata per aiutare a raggiungere lo spopolamento globale.

Dato che molti dei più noti sostenitori del vaccino sono anche sostenitori dello spopolamento, lo sfruttamento della piattaforma mRNA per ottenere infertilità o morti accelerate non può essere escluso.

https://vaccines.news/2017-11-10-bombshell-science-paper-documents-the-depopulation-chemical-covertly-spiked-into-vaccines.html

– Alcuni tipi di vaccini a mRNA – chiamati “auto-amplificanti” – iniettano nel corpo un “meccanismo di replicazione virale” per costringerlo a continuare a replicare le proteine codificate per un periodo di tempo prolungato, rendendo così impossibile interrompere il processo una volta che è iniziato.

– La risposta immunitaria può essere molto più ampia del previsto, poiché il corpo «vede» i frammenti di mRNA introdotti come prova che il corpo è sotto attacco da parte di un agente patogeno. “Effetti indesiderati: il filamento di mRNA nel vaccino può provocare una reazione immunitaria non intenzionale”, spiega la phg Foundation (Univ. Di Cambridge). E come ha detto Stephane Bancel, CEO di Moderna, in una conferenza TEDxBeaconStreet nel 2013:

“……L’mRNA crea una risposta immunitaria. Perché? Perché un virus è costituito da mRNA. Come l’influenza. Quindi se iniettiamo mRNA in un paziente, cosa succede? Il suo corpo pensa che egli abbia appena preso l’influenza… – Esiste un rischio ben noto che l’mRNA introdotto nel corpo possa produrre delle reazioni autoimmuni, in cui le cellule del corpo sono essenzialmente programmate per attaccare altre cellule sane. [Da “vaccini mRNA – una nuova era nella vaccinologia”], pubblicato su Nature Reviews Drug Discovery nel 2018, https://www.nature.com/articles/nrd.2017.243 scritto da Norbert Pardi e colleghi: … recenti studi sull’uomo hanno dimostrato reazioni sistemiche o al sito di iniezione moderate e in rari casi gravi per diverse piattaforme di mRNA … Una possibile preoccupazione potrebbe essere che alcune piattaforme vaccinali basate su mRNA54,166 inducano potenti risposte all’interferone di tipo I, che sono state associate non solo all’infiammazione ma anche potenzialmente all’autoimmunità.

Un altro potenziale problema di sicurezza potrebbe derivare dalla presenza di RNA extracellulare durante la vaccinazione con mRNA. È stato dimostrato che l’RNA nudo extracellulare aumenta la permeabilità delle cellule endoteliali strettamente compattate e può quindi contribuire all’edema. Un altro studio ha dimostrato che l’RNA extracellulare promuove la coagulazione del sangue e la formazione di trombi patologici …”

In altre parole, avere l’RNA che circola nel sangue, al di fuori delle cellule – che è il modo in cui vengono somministrati i vaccini a mRNA – può essere causa di coagulazione, che è anche uno degli effetti collaterali mortali del COVID-19 stesso. Nella ricerca sono state notate anche reazioni autoimmuni.

I sostenitori delle biotecnologie a mRNA amano ripetere che: “…I vaccini a mRNA sono molto più facili e veloci da produrre rispetto ai vaccini tradizionali … e non usano animali per far crescere organi malati..”

Tutto ciò solleva la domanda: se lo scopo dei vaccini a mRNA è programmare le cellule del corpo affinché sintetizzino degli antigeni che vengono poi riconosciuti dal sistema immunitario come «nemici»,

perché non iniettare semplicemente antigeni nel corpo in primo luogo e saltare la necessità di controllare, dirottandoli senza conoscerne gli esiti, i meccanismi della sintesi proteica?

Fonte: « mRNA Vaccines Might Prove Catastrophic in a Rushed Coronavirus Response»

Traduzione, rielaborazione dei contenuti e riferimenti bibliografici a cura di Davide Suraci

La “Sicurezza” dei Vaccini…

Brevissimo estratto dal Capitolo XII° del Dossier: Operazione Corona – Colpo di stato globale: Analisi bio-medica, economica e politica della più grande truffa della storia dell’umanità.

Alcuni esempi di come viene spiegata la “sicurezza” dei vaccini al grande pubblico dalle corporations del farmaco e del come delle certezze scientifiche sbandierate per molti decenni, scompaiono letteralmente dalla rete perché sinceramente “scomode”. Ma io le ho recuperate con la “Waybackmachine”

In che modo la FDA valuta la sicurezza dei vaccini?

“I vaccini vengono sottoposti a test rigorosi e approfonditi per determinarne la sicurezza e l’efficacia. Scienziati altamente qualificati e personale medico della FDA esaminano attentamente tutte le informazioni in una domanda di marketing prima che un vaccino possa essere approvato per l’uso da parte del pubblico. Dopo l’approvazione, la FDA controlla attentamente anche la qualità dei vaccini: tutti i lotti prodotti devono superare i test prima di poter essere utilizzati. E come con tutti i produttori di farmaci, i produttori di vaccini devono seguire rigorosi standard di produzione. Inoltre, la FDA conduce ispezioni di routine dei siti di produzione. La FDA lavora anche a stretto contatto con i Centers for Disease Control and Prevention (CDC) per monitorare le segnalazioni di effetti collaterali (eventi avversi) dei vaccini. FDA e CDC prendono sul serio tutti i rapporti e collaborano per valutare e affrontare eventuali problemi potenziali”. (Food and Drug Administration – FDA May, 31 2016) – Documento cancellato dal sito ufficiale della FDA ma recuperato attraverso la waybackmachine a questo link: https://web.archive.org/web/20170528213949/https://www.fda.gov/AboutFDA/Transparency/Basics/ucm194586.htm

Sicurezza dei vaccini

“La ricerca e la sperimentazione sulla sicurezza sono alla base di ogni aspetto dello sviluppo e della produzione di vaccini in Australia. Prima che i vaccini siano resi disponibili per l’uso, vengono rigorosamente testati su migliaia di persone in studi clinici progressivamente più grandi che sono rigorosamente monitorati per la sicurezza. I risultati di questi studi costituiscono la base per un processo continuo di test e monitoraggio che dura per tutta la vita di ciascun vaccino. Tutti i vaccini registrati in Australia dalla Therapeutical Goods Administration (TGA) vengono valutati per garantire che siano efficaci, conformi a rigorosi standard di produzione e che abbiano un solido record di sicurezza. Ciò include test rigorosi per ciascun componente del vaccino, inclusi conservanti, additivi e adiuvanti del vaccino. Possono essere necessari fino a 10 anni prima che un vaccino venga approvato per l’uso”. (Australian Government, Department of Health, Immunise Australia Program. April 20, 2015) Documento cancellato dal sito ufficiale della FDA ma recuperato attraverso la waybackmachine  a questo link : https://web.archive.org/web/20150426041949/http://www.immunise.health.gov.au/internet/immunise/publishing.nsf/Content/safety-of-vaccines

“I vaccini sono tenuti ai più alti standard di sicurezza. Gli Stati Uniti hanno attualmente la fornitura di vaccini più sicura ed efficace della storia. I vaccini sono sottoposti a un rigoroso ed ampio programma di valutazione per determinare la sicurezza e l’efficacia. Se il vaccino riceve l’approvazione dalla FDA, viene continuamente monitorato per la sicurezza e l’efficacia”. (U.S. Department of Health & Human Services accessed on January, 28  2017). Originariamente qui, (poi eliminato dal sito ufficiale del governo USA): https://www.vaccines.gov/basics/safety/informed/ adesso visibile qui: https://web.archive.org/web/20150426041949/http://www.immunise.health.gov.au/internet/immunise/publishing.nsf/Content/safety-of-vaccines

“Osservare i bambini vaccinati per molti anni alla ricerca di condizioni di salute a lungo termine non sarebbe pratico e non sarebbe etico negare ai bambini un vaccino efficace mentre sono in corso studi a lungo termine”. (CDC Centers for Disease Control and Prevention – CDC: Parents Guide to childhood immunization. August 2015 p.33) https://www.cdc.gov/vaccines/parents/tools/parents-guide/downloads/parents-guide-508.pdf

Le affermazioni secondo cui i vaccini “vengono sottoposti a test rigorosi e approfonditi”, che sono “mantenuti secondo i più alti standard di sicurezza”, ecc., sono bugie. Gli studi che sono alla base delle autorizzazioni all’immissione in commercio sono un completo e totale “pasticcio metodologico”.Sono progettati così male che non consentono il rilevamento e la valutazione degli effetti della vaccinazione a breve termine, figuriamoci a lungo termine. Tali studi metodologicamente così inadeguati non dovrebbero mai far parte del processo di rilascio delle autorizzazioni all’immissione in commercio. Devo sottolineare qui che l’utilizzo di massa di vaccini non testati, cioè vaccini che non sono stati testati in modo affidabile, non è raro. Al contrario, la concessione di un’autorizzazione all’immissione in commercio per i vaccini senza studi metodologicamente validi di sicurezza ed efficacia è la regola, non un’eccezione.

Puoi leggere tutti i capitoli del dossier “Operazione Corona – Colpo di stato globale: Analisi bio-medica, economica e politica della più grande truffa della storia dell’umanità.” acquistabile ai links (a seconda della disponibilità):

https://amzn.to/2N2Sc2z (Amazon)

https://www.macrolibrarsi.it/libri/__operazione-corona.php (Macrolibrarsi)

http://www.auroraboreale-edizioni.com/ (Aurora Boreale Edizioni)

Davide Suraci