Vasculiti, Disturbo Neurologico Funzionale e Reazioni Autoimmuni da Vaccinazioni…

Premessa

Le vaccinazioni Covid-19 stanno manifestando un numero sempre crescente di reazioni avverse in cui le componenti neurologica e psichiatrica stanno assumendo un peso significativo: assistiamo infatti a situazioni infiammatorie o pro-infiammatorie con i connotati (apparentemente) tipici delle reazioni autoimmuni e interessanti (apparentemente) il sistema nervoso periferico, così come i disturbi di questo ultimo associati al sistema nervoso centrale (quindi con i connotati di natura psichiatrica e neurologica contemporaneamente). Attualmente, la linea di demarcazione fra questi due ambiti appare confusa. Certamente la riprogrammazione epigenetica indotta dai vaccini a mRNA sta facendo il suo corso.. [Davide Suraci – 7 Febbraio 2024]

Vasculiti e Reazioni Autoimmuni ai Vaccini a DNA Ricombinante

In questo report bibliografico, pubblicato nel Capitolo 23 del testo “Vaccines and Autoimmunity” pp 239-248 (Alessandra Soriano, Rotem Inbar, Giovanna Passaro, e Raffaele Manna) di Yehuda Shoenfeld et al., vengono evidenziate le reazioni avverse (vasculiti) ai vaccini per l’epatite B, a quello per l’epatite B ricombinante, antinfluenzale e antitetanico .Lo studio mette in luce l’insorgenza di granulomatosi con poliangite (GPA), granulomatosi eosinofila con poliangite (EGPA), poliangite microscopica (MPA) a seguito della somministrazione dei vaccini citati.

E i Vaccini a mRNA?

Gli eventi avversi neurologici successivi alla vaccinazione sono generalmente lievi e transitori, come febbre e brividi, mal di testa, affaticamento, mialgia e artralgia o effetti locali nel sito di iniezione come gonfiore, arrossamento o dolore. La complicanza neurologica post-vaccinazione più devastante è la trombosi del seno venoso cerebrale. Il seno venoso cerebrale è frequentemente segnalato nelle donne in età fertile, generalmente dopo la vaccinazione a base di adenovettori. Un’altra importante complicanza neurologica preoccupante è la paralisi di Bell, segnalata prevalentemente in seguito alla somministrazione di vaccino mRNA. La mielite trasversa acuta, l’encefalomielite acuta disseminata e la polineuropatia demielinizzante acuta sono altri eventi avversi neurologici inattesi che si verificano come risultato del fenomeno del mimetismo molecolare. È stata anche registrata la riattivazione dell’herpes zoster in molte persone, in seguito alla somministrazione di vaccini a mRNA.[….] Sono necessari ampi studi prospettici collaborativi per dimostrare o confutare l’associazione causale tra vaccino ed eventi avversi neurologici che si verificano durante la vaccinazione.

[…] Dopo l’autorizzazione, viene continuamente segnalato un ampio spettro di complicazioni neurologiche a seguito della vaccinazione contro il COVID-19. Tutti i tipi di vaccini a mRNA sono associati al rischio di numerose gravi complicazioni neurologiche, come l’encefalomielite acuta disseminata, la mielite trasversa, la meningite asettica, la sindrome di Guillain-Barré, la miofascite macrofagica, la miosite, l’ictus, convulsioni, sincope. sono definiti come eventi post-vaccinazione che mettono a rischio la vita, richiedono il ricovero in ospedale o comportano una grave disabilità. La FND (Functional Neurological Disorder) correlata al vaccino COVID-19 è una malattia correlata al cervello rappresenta dal 2,88 al 3,5% delle complicanze neurologiche legate al vaccino COVID-19. La FND si verifica dopo quasi ogni tipo di vaccino COVID-19 e presenta diverse manifestazioni cliniche, tra cui motoria, sensoriale, visiva e ipersensibilità. È stato riscontrato che il vaccino antinfluenzale è associato alla narcolessia nei giovani. Diversi meccanismi patogeni, come il mimetismo molecolare, la neurotossicità diretta e le reazioni immunitarie anomale, sono stati attribuiti per spiegare questi vaccini associati a complicanze neurologiche. Anche i vaccini contro il COVID-19 non sono esenti da complicazioni neurologiche…

Capitolo 23 del testo “Vaccines and Autoimmunity” pp 239-248 (Alessandra Soriano, Rotem Inbar, Giovanna Passaro, e Raffaele Manna) di Yehuda Shoenfeld et al.

Spectrum of neurological complications following COVID-19 vaccination (Ravindra Kumar Garg and Vimal Kumar Paliwal)

Neurological Complications Following COVID-19 Vaccination (Aparajita Chatterjee and Ambar Chakravarty)

Neurological Disorders following COVID-19 Vaccination (by Ying Yang and Lisu Huang)

Disturbo Neurologico Funzionale (FND) e Vaccinazioni Covid-19

N.B.: Il disturbo neurologico funzionale (FND) è una condizione medica in cui si verifica un problema con il funzionamento del sistema nervoso e il modo in cui il cervello e il corpo inviano e ricevono segnali, piuttosto che un processo patologico strutturale come la sclerosi multipla o l’ictus. La FND può comprendere un’ampia varietà di sintomi neurologici come debolezza, disturbi del movimento, sintomi sensoriali e blackout. I fattori di rischio fisici e/o psicologici possono causare sintomi funzionali che devono ancora essere spiegati da una malattia riconosciuta. La FND occupa un’area grigia tra psichiatria e neurologia che storicamente non è riuscita a suscitare l’interesse di ricercatori e medici. Tuttavia, le nuove scoperte scientifiche stanno influenzando il modo in cui i pazienti vengono diagnosticati e trattati e creando un cambiamento generale nell’atteggiamento nei confronti dei pazienti con FND.

I sintomi della FND ad esordio acuto in seguito alla vaccinazione contro il COVID-19 sono rari nella popolazione generale.

[…] Ciononostante, nei giovani inclini alla FND, la vaccinazione contro il COVID-19 può innescare una FND di nuova insorgenza, una ricaduta della FND o un’esacerbazione della FND. Si ritiene che i meccanismi biologici coinvolti siano complessi: una cascata di risposte legate allo stress (inclusa la riprogrammazione epigenetica) che portano ad un’attivazione sostenuta delle reti neurali (neurone-gliali) accoppiate con un alterazione della connettività all’interno e tra le reti.

La vaccinazione sembra agire come un fattore di stress fisico o psicologico che innesca il sistema di stress e la sua cascata di risposte legate alla minaccia, con un endpoint finale di funzione aberrante della rete neurale che supporta sintomi neurologici funzionali di nuova insorgenza.

Simile alla FND innescata tramite ACE, la FND innescata dalla vaccinazione richiede una diagnosi e un trattamento tempestivi per massimizzare la probabilità che il giovane ritorni in salute e benessere. La presenza di molteplici comorbidità, mediche o psichiatriche, può complicare il processo di trattamento e influenzare negativamente i risultati a lungo termine.

COVID-19 Vaccination in Young People with Functional Neurological Disorder: A Case-Control Study

Elaborazione a cura di Davide Suraci

La permeabilità intestinale comporta un rischio di autoimmunità fino a 30 volte maggiore…

La sindrome dell’intestino permeabile è più di una moda passeggera pubblicizzata: è una condizione formidabile che potrebbe influenzare il resto della tua vita.

Datis Kharrazian Ph.D., DHSc, DC, MS, MMSc, FACN scrive:

Un mio recente studio pubblicato sull’ International Journal of Molecular Sciences ha scoperto che una barriera intestinale danneggiata, o un intestino permeabile, può portare a 30 volte le probabilità di sviluppare una malattia autoimmune.

L’intestino permeabile consente al cibo non digerito, ai microrganismi, alle tossine e ad altri agenti patogeni presenti nell’intestino di fuoriuscire nel flusso sanguigno. Ciò può innescare un’infiammazione sistemica e promuovere l’autoimmunità.Le pareti intestinali sono costituite da cellule epiteliali che assorbono i nutrienti dal cibo impedendo al contempo il passaggio di composti dannosi nel flusso sanguigno. A collegare le cellule epiteliali ci sono molecole di occludina a giunzione stretta, che impediscono a potenziali agenti patogeni di passare nel flusso sanguigno. L’occludina è regolata dalla zonulina, una proteina che dice all’occludina quando aprire o chiudere le giunzioni.

Occludina e Zonulina

Quando si verifica un danno intestinale (parlerò dei fattori che causano danni più avanti in questo articolo), l’occludina e la zonulina rimangono intrappolate in questo danno tissutale. Il sistema immunitario produce anticorpi contro di loro per rimuovere le cellule morte e danneggiate. Pertanto, possiamo identificare la permeabilità intestinale attraverso test di laboratorio mediante screening per livelli elevati di zonulina e occludina.

Il nostro studio ha indagato se questi marcatori di permeabilità intestinale si riferiscono a marcatori di reazioni autoimmuni.Abbiamo studiato i risultati di laboratorio di 266 soggetti casuali testati per:

  • Anticorpi occludina.
  • Anticorpi zonulina.
  • 24 anticorpi tissutali indicativi di varie forme di autoimmunità.

I risultati hanno mostrato che i soggetti con permeabilità intestinale avevano una probabilità fino a 30 volte maggiore di sviluppare autoimmunità rispetto a quelli senza. Hanno mostrato un aumento degli anticorpi autoimmuni in 17 su 24 marcatori autoimmuni, inclusi quelli contro il cervello, le ghiandole ormonali, le articolazioni, i muscoli lisci, il tessuto cardiovascolare e altro ancora.Abbiamo scoperto che maggiori sono gli anticorpi dell’intestino permeabile, maggiori sono gli anticorpi autoimmuni. In altre parole, peggiore è il tuo intestino permeabile, maggiore è il rischio di autoimmunità.

La permeabilità intestinale aumenta il rischio di autoimmunità neurologica

Abbiamo anche trovato una correlazione tra gli anticorpi zonulina e occludina e l’autoimmunità neurologica. Il cervello ha una barriera che svolge una funzione simile alla barriera intestinale: consentire l’ingresso e l’uscita dei composti necessari proteggendo il cervello dagli agenti patogeni. La barriera ematoencefalica è composta anche da zonulina e occludina, che funzionano come nell’intestino. La ricerca suggerisce che la rottura della barriera emato-encefalica svolge un ruolo nei disturbi neuroinfiammatori, nella degenerazione cerebrale e nell’autoimmunità cerebrale. Ad esempio, studi precedenti hanno mostrato una correlazione tra permeabilità intestinale avanzata e sclerosi multipla. I nostri dati supportano ricerche precedenti, mostrando una correlazione tra intestino permeabile e autoimmunità cerebrale.

Autoimmunità con permeabilità intestinale, ossea e articolare

È stato dimostrato anche che la permeabilità intestinale promuove l’autoimmunità contro le ossa e il tessuto articolare. Studi recenti suggeriscono che la permeabilità intestinale può portare alla circolazione di batteri che promuovono l’infiammazione nelle ossa e nelle articolazioni.

Perdita intestinale e autoimmunità contro tiroide, fegato, pancreas, ghiandole e intestino

Il nostro studio supporta anche ricerche precedenti che mostrano collegamenti tra marcatori dell’intestino permeabile e diabete di tipo 1, malattia autoimmune della tiroide, autoimmunità surrenale (morbo di Addison), autoimmunità ovarica/testicolare, colangite sclerosante primaria, epatite autoimmune, autoimmunità gastrica e malattie infiammatorie croniche intestinali.

Le 3 fasi dell’autoimmunità

Avere anticorpi autoimmuni non significa necessariamente avere una malattia autoimmune o addirittura sintomi. Clinicamente, ho riscontrato che l’autoimmunità si muove attraverso tre fasi:

Stadio 1: Anticorpi positivi ma nessun sintomo o malattia.

Stadio 2: anticorpi e sintomi elevati, ma la loro condizione non è progredita fino a uno stato patologico che richiede un intervento medico.

Stadio 3: gli anticorpi elevati e il loro danno autoimmune sono sufficientemente estesi da essere diagnosticati come una malattia e richiedere cure mediche.Se ti trovi nella Fase 1 o nella Fase 2, potresti potenzialmente prevenire la progressione dell’autoimmunità riparando l’intestino permeabile, identificando i fattori scatenanti autoimmuni e mantenendo una dieta e uno stile di vita che smorzano l’infiammazione. Se sei nella fase 3, l’implementazione di strategie che attenuano l’espressione autoimmune può prevenire il peggioramento della malattia.

Cose che causano permeabilità intestinale

L’intestino che perde non appare dal nulla. Analizzando la ricerca e la pratica clinica, ho scoperto molteplici fattori che contribuiscono alla permeabilità intestinale. Loro includono:

  • Sensibilità al glutine.
  • Sensibilità ad altri alimenti (latticini, uova, soia, lectine, ecc.).
  • Infezioni intestinali: batteriche, parassitarie o fungine.
  • Carenze o squilibri ormonali.
  • Lesioni cerebrali pregresse: problemi di sviluppo o degenerazione del cervello.
  • Instabilità dello zucchero nel sangue: zucchero nel sangue cronicamente alto o basso.
  • Bassa pressione sanguigna.
  • Autoimmunità intestinale.
  • Stress cronico.
  • Privazione cronica del sonno.
  • Corticosteroidi, antibiotici, FANS e altri farmaci.
  • Consumo di alcool.
  • Carenza di glutatione.
  • Carenza di vitamina D.
  • Disbiosi (squilibrio di batteri cattivi).

Comprendere quali meccanismi sottostanti hanno causato la permeabilità intestinale ti aiuta a comprendere meglio la portata del problema e come affrontarlo. Qualcuno con una lesione cerebrale pregressa avrà una strategia molto diversa rispetto a qualcuno che stava assumendo un ciclo di antibiotici. La cosa bella è che affrontando il meccanismo sottostante oltre alla permeabilità intestinale stessa, migliorerai significativamente la tua salute e il tuo benessere generale.

Spero che ormai tu ti renda conto di quanto sia grave la permeabilità intestinale. Non è una moda passeggera, ma una condizione formidabile che potrebbe influenzare il resto della tua vita. Ignorando i segnali del tuo corpo per gestire l’intestino permeabile, rischi di innescare o esacerbare una condizione autoimmune.

The Relationships between Intestinal Permeability and Target Antibodies for a Spectrum of Autoimmune Diseases.

Special Issue “Molecular Mechanisms of Gastrointestinal Immune System and Its Role in Gut Homeostasis and Pathologies”

Datis Kharrazian, Ph.D., DHSc, DC, MS, MMSc, ​​FACN, è uno scienziato ricercatore clinico pluripremiato, formatosi alla Harvard Medical School, professore accademico e fornitore di servizi sanitari di medicina funzionale di fama mondiale. Sviluppa formazione e risorse per pazienti e professionisti nelle aree delle malattie croniche autoimmuni, neurologiche e non identificate utilizzando applicazioni non farmaceutiche.

Traduzione italiana e adattamento a cura di Davide Suraci

Il Rischio di Sviluppo di Autoimmunità dopo Vaccinazioni mRNA Covid-19 Pfizer…

In questo studio viene valutato il rischio di sviluppare autoanticorpi ANA dopo vaccinazione mRNA Pfizer. Studio condotto molto bene in quanto è evidenziato statisticamente lo sviluppo di autoanticorpi ANA (caratteristici di molte patologie/reazioni autoimmuni). Leggete tuttavia la conclusioni di questo studio..

“.. Anche se un soggetto risulta positivo per ANA dopo l’immunizzazione, il potenziale patogeno di questi autoanticorpi, il loro significato clinico e per quanto tempo persistono dopo la vaccinazione non sono ancora chiari…”

 “… Dovrebbero ancora essere condotti studi pluriennali che confuterebbero definitivamente l’ipotesi della possibile induzione di malattie autoimmuni da parte dei vaccini a mRNA… “

 “.. L’ampio spettro di interazioni tra le malattie autoimmuni e la vaccinazione SARS-CoV-2 non è completamente compreso…

The Risk of Autoimmunity Development following mRNA COVID-19 Vaccination

Rischio di Sviluppo di Reazioni Autoimmuni post vaccinazione a mRNA nei Bambini.

Di seguito, altri studi recenti in cui viene preso in considerazione il rischio di sviluppo di reazioni autoimmuni post vaccinazione a mRNA nei bambini:

Autoantibody Release in Children after Corona Virus mRNA Vaccination: A Risk Factor of Multisystem Inflammatory Syndrome?

Conclusioni: “…La sindrome infiammatoria multisistemica sembra essere una complicazione dopo COVID-19 e probabilmente con una frequenza minore dopo la vaccinazione SARS-CoV-2.

Queste complicazioni dopo la vaccinazione COVID-19 e SARS-CoV-2 possono essere correlate all’autoimmunità. Tuttavia, gli autoanticorpi accoppiati alla proteina G elevati come nei nostri casi non sono chiaramente correlati ai sintomi clinici e devono essere verificati in modo prospettico dopo la vaccinazione…”

Figura 2. Caso 2: rilascio di autoanticorpi dopo la vaccinazione Pfizer-BioNTech BNT162b2 in una ragazza di 13 anni con tiroidite di Hashimoto. Rispetto ai controlli sani e ai valori basali, abbiamo riscontrato un aumento uniforme degli autoanticorpi funzionali contro i recettori accoppiati alla proteina G e gli anticorpi antiperossidasi tiroidea in una ragazza con una malattia autoimmune nota (dopo la prima vaccinazione BNT162b2); tuttavia, dopo la seconda vaccinazione si è verificato un ulteriore aumento dei soli anticorpi antiperossidasi tiroidea. Anti-AT1R: autoanticorpo anti-recettore dell’angiotensina 1; anti-ETAR: autoanticorpo anti-recettore dell’endotelina; anti-α1 adrenerg: autoanticorpo anti-α1 adrenergico; anti-α2 adrenerg: autoanticorpo anti-α2 adrenergico; anti-β1 adrenerg: autoanticorpo anti-β1 adrenergico; anti-β2 adrenerg: autoanticorpo anti-β2 adrenergico; anti-MC R1: autoanticorpo anti-recettore colinergico-1 muscarinico; anti-MC R2: autoanticorpo anti-recettore colinergico-2 muscarinico; anti-MC R3: autoanticorpo anti-recettore colinergico-3 muscarinico; anti-MC R4: autoanticorpo anti-recettore colinergico-4 muscarinico; anti-MC R5: autoanticorpo anti-recettore colinergico-5 muscarinico.

Meccanismi di Attivazione Immunitaria post-vaccinazione a mRNA.

In questo altro studio vengono messi in luce i meccanismi di attivazione immunitaria conseguenti alle vaccinazioni a mRNA: New-onset autoimmune phenomena post-COVID-19 vaccination

I potenziali meccanismi di attivazione immunitaria innescati dal vaccino COVID-19 Le manifestazioni autoimmuni di nuova insorgenza dopo la vaccinazione contro il COVID-19 sono state ampiamente riportate.

I principali meccanismi attraverso i quali il vaccino COVID-19 innesca l’autoimmunità includono

il mimetismo molecolare, la produzione di particolari autoanticorpi e il ruolo di alcuni adiuvanti del vaccino. Precedenti studi hanno rivelato che l’infezione da SARS-CoV-2 potrebbe innescare l’autoimmunità, ma l’associazione tra vaccino COVID-19 e fenomeni autoimmuni rimane nebulosa. Il sistema respiratorio presentato come il primo organo invaso da SARS-CoV-2, che potrebbe essere coinvolto nelle reazioni incrociate tra la risposta immunitaria dopo l’infezione da SARS-CoV-2 e le proteine ​​surfattanti polmonari, perché la glicoproteina del picco di SARS-CoV-2 e le proteine ​​​​del surfattante polmonare condividevano 13 dei 24 pentapeptidi. Inoltre, la reazione incrociata tra le proteine ​​SARS-CoV-2 e una varietà di antigeni tissutali potrebbe portare all’autoimmunità contro il tessuto connettivo e il sistema cardiovascolare, gastrointestinale e nervoso. Le infezioni agiscono come trigger ambientali per causare malattie autoimmuni innescate dai vaccini, mentre gli antigeni microbici possono suscitare risposte immunitarie cross-reattive contro gli auto-antigeni. La cross-reattività immunitaria innescata dalla somiglianza tra alcuni componenti del vaccino e specifiche proteine ​​umane potrebbe rendere il sistema immunitario contro gli antigeni patogeni per attaccare proteine ​​simili nella popolazione suscettibile e portare a malattie autoimmuni, un processo noto come mimetismo molecolare. È stato sospettato che i vaccini contro l’influenza, l’epatite B e il papillomavirus umano inneschino l’autoimmunità attraverso il mimetismo molecolare. Inoltre, solo una minoranza dei soggetti vaccinati ha successivamente sviluppato fenomeni autoimmuni, indicando una predisposizione genetica all’autoimmunità indotta da vaccino. Il vaccino potrebbe innescare la risposta immunitaria adattativa per mostrare il suo effetto protettivo, che può stimolare una condizione iperinfiammatoria.

Gli individui sani dopo la vaccinazione mostrano aumenti acuti dell’espressione di IFN di tipo I, stress ossidativo e accumulo di danni al DNA nelle cellule mononucleate del sangue, insieme a un’efficace produzione di anticorpi neutralizzanti anti-SARS-CoV-2. Sprent e King ritengono che gli effetti collaterali dei vaccini COVID-19 siano semplicemente un sottoprodotto di uno scoppio transitorio della generazione di IFN-I concomitante con l’induzione di una risposta immunitaria efficace. Tuttavia, la produzione di particolari autoanticorpi può essere responsabile di questi eventi avversi.

Gli eventi VITT sono stati ampiamente riportati, che plausibilmente attribuiti all’attivazione piastrinica mediata da anticorpi contro il fattore piastrinico 4 (PF4) attraverso le interazioni IgG-FcγR. Inoltre, l’attivazione del complemento innescata dagli anticorpi anti-PF4 sembra essere implicata nella VITT. Tuttavia, Greinacher A et al. ha scoperto che gli anticorpi PF4 indotti dalla vaccinazione non reagiscono in modo incrociato con la proteina spike SARS-CoV-2. Inoltre, l’attivazione del sistema di contatto da parte dell’acido nucleico, il riconoscimento del complemento delle cellule effettrici allergiche che attivano il vaccino, il riconoscimento anticorpale preesistente di polietilenglicoli (PEG) e l’attivazione diretta dei mastociti, insieme a potenziali predisposizioni genetiche o ambientali all’ipersensibilità, spiegano anafilassi ai vaccini mRNA COVID-19.

08/2023 – Traduzione e adattamento a cura di Davide Suraci

Superamento della Resistenza Genetica alle Patologie Autoimmuni indotto dai Vaccini.

‼️⚠️ Le sollecitazioni immunitarie durante lo sviluppo iniziale infantile, comprese quelle indotte dal vaccino, possono portare ad alterazioni dannose permanenti del cervello e della funzione immunitaria. L’evidenza sperimentale mostra anche che la somministrazione simultanea di soli due o tre adiuvanti immunitari può superare la resistenza genetica all’autoimmunità. In alcuni paesi sviluppati, quando i bambini avranno dai 4 ai 6 anni, avranno ricevuto un totale di 126 composti antigenici insieme ad elevate quantità di coadiuvanti di alluminio (Al) attraverso le vaccinazioni di routine….

☣⛔ In sintesi, le prove della ricerca mostrano che le crescenti preoccupazioni sulle attuali pratiche di vaccinazione possono effettivamente essere giustificate. Poiché i bambini possono essere maggiormente a rischio di complicanze indotte dal vaccino, è urgentemente necessaria una valutazione rigorosa degli impatti negativi sulla salute correlati al vaccino nella popolazione pediatrica.

Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations (2012)

https://pubmed.ncbi.nlm.nih.gov/22235057/

Gli ingredienti pericolosi dei vaccini HPV aumentano il rischio per i giovani (Parte IVª).

Esistono ampie prove scientifiche che suggeriscono che la miscela di adiuvanti contenuta nei vaccini HPV e in altri vaccini sia responsabile di malattie autoimmuni post-vaccinazione in alcuni pazienti.

I disturbi indotti da adiuvanti sono diventati così diffusi che gli esperti medici hanno coniato un nuovo termine per descrivere questa sindrome ombrello: sindrome autoimmune/infiammatoria indotta da adiuvanti (ASIA).

Nella Parte 1 , Parte 2 e Parte 3 di questa serie, abbiamo discusso dei vaccini HPV e dei loro legami con l’insufficienza ovarica, le malattie neurologiche e autoimmuni, l’efficacia del vaccino nella prevenzione del cancro cervicale e l’incapacità degli studi clinici di rilevare problemi di sicurezza. Nella parte 4, discuteremo le preoccupazioni relative a particolari ingredienti del vaccino e forniremo una riflessione sullo sviluppo del vaccino HPV.

Vaccino Quadrivalente Gardasil
Vaccino antipapilloma virus quadrivalente a DNA ricombinante – Gardasil.

Sintesi dei fatti chiave

  • Gli adiuvanti sono usati nei vaccini HPV incluso Gardasil per attirare l’attenzione del sistema immunitario.
  • L’alluminio è un coadiuvante comune nel Gardasil che può essere responsabile di eventi avversi.
  • Un altro ingrediente “segreto” scoperto di Gardasil “HPV DNA”, potrebbe anche essere responsabile di eventi avversi.
  • Entrambi gli adiuvanti immunogenici possono indurre una forte risposta immunitaria o condizioni autoimmuni.
  • La ricerca dovrebbe concentrarsi su attente analisi rischio-beneficio per determinare quali popolazioni beneficiano della vaccinazione. Alcune persone potrebbero non trarre beneficio dalla vaccinazione, ma sarebbero meglio servite dalla diffusione dello screening del cancro.

Alluminio, un coadiuvante problematico del vaccino

Il CDC elenca i vaccini che utilizzano l’alluminio come adiuvante e Gardasil è nell’elenco. 

Per stimolare una risposta immunitaria potenziata destinata a durare per 50 anni, Merck ha aggiunto al vaccino Gardasil un adiuvante contenente alluminio particolarmente tossico, l’idrossifosfato solfato di alluminio amorfo (AAHS).

L’alluminio è il terzo metallo più abbondante nella crosta terrestre  ed è ampiamente presente nell’ambiente: nelle piante, nel suolo, nell’acqua, nell’aria, nella catena alimentare e nei prodotti farmaceutici. Nel frattempo, l’alluminio è una potente tossina che può danneggiare gravemente  più sistemi del corpo umano , inclusi ma non limitati ai sistemi nervoso, respiratorio, muscoloscheletrico, digestivo, renale ed epatico.

Il cervello è il  principale organo bersaglio dell’alluminio. Può penetrare la barriera nel cervello. L’alluminio è stato collegato a meccanismi di azione inclusi, ma non limitati a:

Studi sottoposti a revisione paritaria mostrano che l’alluminio si lega alle proteine ​​non vaccinali, comprese le proteine ​​dell’ospite e i virus latenti, innescando condizioni autoimmuni e altre gravi condizioni.

Gli esperti di vaccini pediatrici stanno determinando il livello accettabile di esposizione dei bambini all’alluminio.

In un articolo del 2020 pubblicato su Frontiers in Microbiology, Paul Offit, MD e colleghi hanno sostenuto che l’esposizione cumulativa di un bambino all’alluminio attraverso i vaccini durante i sei mesi di vita è inferiore alle esposizioni naturali attraverso il latte materno e il latte artificiale .

Offit è il direttore del Vaccine Education Center e un medico curante nella Divisione di Malattie Infettive del Children’s Hospital di Philadelphia. Lui ei suoi colleghi hanno sviluppato vaccini e hanno scritto molto sulla sicurezza dei vaccini.

Ma questo argomento non è rassicurante. In questione qui c’è l’esposizione cumulativa di un bambino all’alluminio. Queste esposizioni provengono da fonti naturali, come il latte materno e il latte artificiale. Vari vaccini e altri prodotti farmaceutici sovrapposti a queste esposizioni naturali (ad esempio, diverse marche di iniezioni di vitamina K somministrate ai neonati alla nascita contengono anche alluminio).

Ancora più preoccupante è che la versione più recente di questo vaccino (Gardasil 9) contiene quasi il doppio della quantità di AAHS rispetto alla versione precedente del vaccino.

L’ingrediente “segreto” di Gardasil

I medici di nove paesi hanno inviato campioni di Gardasil da testare per il DNA del papillomavirus umano (HPV)  perché sospettavano che il DNA ricombinante residuo dell’HPV lasciato nel vaccino potesse essere stato un fattore che ha contribuito a causare effetti collaterali post-vaccinazione inspiegabili.

Per condurre questa ricerca, gli scienziati hanno richiesto campioni di Gardasil da Australia, Bulgaria, Francia, India, Nuova Zelanda, Polonia, Russia, Spagna e Stati Uniti. È stato confermato che ogni campione proveniva da un numero di lotto diverso.  

I test di laboratorio hanno rivelato che tutti i 16 campioni di Gardasil contenevano frammenti di DNA dell’HPV. I frammenti specifici includevano: DNA di HPV-11, DNA di HPV-18 o frammenti comprendenti elementi di entrambi i genotipi.  

I frammenti di DNA dell’HPV sono stati trovati saldamente attaccati all’adiuvante (AAHS).

Se questi risultati abbiano un significato clinico è una questione aperta. Ulteriori ricerche sulla sicurezza dei vaccini devono tenerne conto e progettare gli studi appropriati per comprendere l’impatto biologico dei frammenti residui di DNA dell’HPV legati a un adiuvante particolato a base di minerali.

Il sito web della FDA afferma questo risultato: ” Informazioni della FDA sul Gardasil: presenza di frammenti di DNA previsti, nessun rischio per la sicurezza “. Tuttavia, il contenuto di questa pagina non è stato trovato per motivi sconosciuti quando è stato tentato l’accesso il 25 febbraio 2023. La pagina è stata comunque recuperata alla data di questo articolo tramite la waybackmachine (Nota di AutoimmunityReactions).

Questo ingrediente può stimolare l’infiammazione

Gli adiuvanti del vaccino inducono il sistema immunitario a montare una risposta robusta. Questo è utile quando si vaccinano gli anziani, che hanno un sistema immunitario in “senescenza”, nel senso che sta iniziando a diminuire. Tuttavia, gli adiuvanti nei vaccini progettati per i giovani con un sistema immunitario sano che subiscono enormi cambiamenti metabolici durante l’adolescenza richiedono maggiore cautela.

Questi frammenti di DNA possono agire come agonisti del recettore Toll-like 9 (“TLR9”) . I TLR sono un gruppo di proteine ​​sulla superficie o all’interno delle cellule, che agiscono in prima linea nel sistema immunitario, rilevando vari agenti patogeni o segnali dannosi dall’ambiente e rispondendo ad essi.

TLR9 lega preferenzialmente il DNA presente in virus e batteri e innesca cascate di segnalazione che portano a una risposta citochinica pro-infiammatoria, che può innescare distinte risposte neuroinfiammatorie nel sistema nervoso.

Il dottor Sin Hang Lee, direttore della Milford Molecular Diagnostics con sede nel Connecticut, ha ipotizzato che, senza l’aggiunta dell’agonista TLR9, Gardasil non sarebbe immunogenico. Secondo Lee, i frammenti di DNA legati alle nanoparticelle simili al virus AAHS agiscono come agonisti TLR9 in entrambi i vaccini Gardasil e Gardasil 9, creando il più forte adiuvante immunostimolante in uso in qualsiasi vaccino.

Lee ha anche trovato frammenti di DNA dell’HPV del vaccino Gardasil nella milza post mortem e campioni di sangue prelevati da un’adolescente sana morta sei mesi dopo un terzo vaccino HPV.

Un libro di testo del 2015, Vaccines and Autoimmunity , a cura del Dr. Yehuda Shoenfeld, il padre della ricerca sull’autoimmunità, include articoli di molti dei maggiori esperti mondiali di autoimmunità. Questi scienziati hanno concluso che Gardasil potrebbe causare disturbi autoimmuni a causa dei potenti ingredienti immunostimolanti del vaccino.

Eventi avversi gravi  dopo aver ricevuto vaccini HPV

1. Disturbi neurologici e autoimmuni

La letteratura ha riportato potenziali disturbi neurodegenerativi infiammatori a base immunitaria che coinvolgono il sistema nervoso centrale , noti come encefalomielite disseminata acuta , a seguito di iniezioni di Gardasil . Ampi studi basati su registri condotti in Danimarca, Svezia e Germania hanno identificato associazioni plausibili tra la vaccinazione contro l’HPV e le condizioni autoimmuni. Questo argomento è trattato nella parte 2 di questa serie.

2. Morte inspiegabile

In uno studio JAMA Network Open pubblicato nel 2009, 12.424 eventi avversi segnalati sono stati registrati nel Vaccine Adverse Event Reporting System (VAERS) a seguito della vaccinazione con Gardasil dal 1° giugno 2006 al 31 dicembre 2008. Tra questi vi erano 32 decessi con una media età di 18 anni . I decessi si sono verificati da due a 405 giorni dopo l’iniezione di Gardasil.

Dei 32 decessi, le cartelle cliniche ei referti dell’autopsia sono stati esaminati per 20. Queste revisioni hanno confermato quattro decessi inspiegabili e sei decessi cardiaci . Non c’è stato alcun tentativo di stabilire una relazione causale, ovvero alcuno sforzo per garantire o escludere un collegamento con la vaccinazione Gardasil. Tuttavia, gli autori hanno riferito che la sincope (perdita di coscienza causata da un calo della pressione arteriosa) e gli eventi tromboembolici (ad esempio, trombosi venosa profonda o embolia polmonare) dei destinatari di Gardasil erano sproporzionatamente elevati.

3. Sincope

La sincope si è verificata in 1.896 casi , la metà entro 15 minuti dall’iniezione. Tra coloro che sono svenuti, il 15% ha provocato una caduta e la maggior parte di queste cadute (68%) ha provocato un trauma cranico. Si consiglia ai destinatari del vaccino di sedersi per 15 minuti dopo l’iniezione.

4. Tromboembolia

Il rapporto di segnalazione proporzionale per gli eventi tromboembolici è stato di 4,8 per i bambini di età compresa tra 6 e 17 anni (p=0,04) e di 6,7 per quelli di età compresa tra 18 e 29 anni (p=0,006) . Dei 31 casi, 28 presentavano un fattore di rischio noto per tromboembolia venosa. I fattori di rischio includevano il controllo delle nascite contenente estrogeni in 20 dei 31 casi.

5. Anafilassi

L’anafilassi tra le giovani donne che ricevono la vaccinazione Gardasil è circa da 10 a 53 volte superiore a quella identificata in un programma scolastico comparabile per la vaccinazione contro il meningococco C. L’incidenza di anafilassi correlata all’HPV era compresa tra 1,0 e 5,3 per 100.000, mentre era di 0,1 per 100.000 per la vaccinazione contro il meningococco C. Tutti i casi di anafilassi sono stati identificati utilizzando la definizione di caso di Brighton di anafilassi .

Vaccinazione HPV tra i maschi

La vaccinazione di routine di ragazzi e uomini è stata implementata solo in pochi paesi, tra cui Australia, Canada e Stati Uniti. I programmi di vaccinazione basati sulla popolazione sono progettati per aumentare l’immunità di gregge tra maschi e femmine e ridurre l’incidenza di malattie anali, peniene, craniche e tumori del collo tra i maschi in particolare.

I sintomi dell’infezione da HPV tra i maschi includono i seguenti sintomi sul pene, sull’ano, sullo scroto o sulla bocca:

  • verruche
  • crescite
  • piaghe
  • granuli

È stata condotta una revisione sistematica dell’efficacia e della sicurezza della vaccinazione HPV tra i maschi per raccogliere la ricerca fino al 2017. Nell’analisi sono stati inclusi sette studi, comprendenti dati su circa 5.000 maschi; quattro studi sono stati randomizzati e tre non randomizzati. Solo due studi includevano eventi avversi gravi e nessuno di essi è stato giudicato dai ricercatori correlato al vaccino.

Questo studio suggerisce che la vaccinazione è più efficace tra i maschi se somministrata prima dell’inizio dell’attività sessuale. Questa scoperta supporta la ricerca che porta alla stessa conclusione sulle donne.

Gli autori hanno sottolineato che sono necessarie ulteriori ricerche per stabilire i benefici dei programmi di vaccinazione su larga scala tra i maschi. Sebbene questa revisione sistematica del 2018 sull’efficacia e la sicurezza della vaccinazione contro l’HPV sia stata la prima ad essere pubblicata per i maschi, sette revisioni sistematiche tra quasi 46.000 partecipanti sono state condotte per le femmine, dimostrando una quota sproporzionata di ricerca tra le femmine all’epoca.

Alcuni fattori di rischio aumentano la probabilità di cancro anale, del pene e della gola da HPV tra gli uomini, tra cui il fumo, l’inizio precoce dell’attività sessuale, lo stato sieropositivo e gli uomini che hanno rapporti sessuali con uomini. L’uso del preservativo, il mantenimento di reti sessuali stabili e l’inizio dell’attività sessuale più tardi nella vita riducono il rischio. Alcuni operatori sanitari possono offrire un Pap test anale agli uomini che sono a maggior rischio di cancro anale, come gli uomini che vivono con l’HIV e quelli che ricevono sesso anale.

Il CDC afferma che la vaccinazione non è universalmente raccomandata per i maschi di età superiore ai 26 anni:  “La vaccinazione contro l’HPV dai 27 ai 45 anni offre meno benefici. La maggior parte degli adulti sessualmente attivi è già stata esposta all’HPV, anche se la vaccinazione non prende di mira tutti i tipi di HPV”. È improbabile che coloro che hanno una relazione stabile contraggano una nuova infezione da HPV.

Abbiamo davvero bisogno della vaccinazione contro l’HPV?

L’infezione da HPV è un fattore di rischio per il cancro cervicale. Tuttavia, ci sono molti altri fattori di rischio per il cancro cervicale. Questi includono l’intraprendere rapporti sessuali prima dei 16 anni, avere più partner sessuali, l’ esposizione all’HIV , il fumo e l’ esposizione ad agenti cancerogeni in giovane età.

La ricerca futura dovrebbe considerare i tassi di screening differenziali per etnia, età e stato socioeconomico. I risultati dovrebbero essere stratificati per età al primo contatto sessuale e storia di vaccinazione per iniziare a districare gli effetti della vaccinazione precoce insieme alle disparità nei tassi di screening.

La ricerca deve anche considerare gli effetti protettivi dell’immunità naturale contro l’HPV .

  • Invito a comportamenti sessuali più etici

Avrebbe senso testare le donne prima della vaccinazione se avevano già avuto un’attività sessuale? Forse. Poiché la vaccinazione è profilattica, potremmo ottimizzare i benefici del vaccino e ridurre i danni offrendo la vaccinazione a coloro che non sono ancora infetti (prevenzione primaria) e concentrandoci sullo screening del cancro (prevenzione secondaria) tra coloro che sono già stati infettati da un ceppo di HPV.

Gli adolescenti che intraprendono un’attività sessuale precoce sono a maggior rischio di una serie di problemi di salute mentale e fisica. Il CDC ha recentemente pubblicato un rapporto in cui si afferma: “Quasi una giovane donna su cinque ha subito violenza sessuale, un aumento del 20% dal 2017 “. Circa una ragazza adolescente su 10 ha riferito di essere stata costretta a fare sesso.

La violenza sessuale è una seria preoccupazione e prevenire i contatti sessuali indesiderati dovrebbe essere una priorità. Genitori, autorità sanitarie pubbliche e medici possono aiutare a proteggere le ragazze adolescenti insegnandole ad anticipare le situazioni ad alto rischio. Ciò contribuirà anche a prevenire i tumori cervicali e genitali riducendo i contatti intimi indesiderati. Rafforzare il processo di screening del cancro tra coloro che sono già sessualmente attivi è un altro modo per ridurre la mortalità per cancro cervicale.

A parte l’evidenza che i vaccini HPV causano danni e l’assenza di una solida analisi del rapporto rischio-beneficio, vaccinare gli adolescenti contro una malattia a trasmissione sessuale solleva questioni etiche e morali. Dare a preadolescenti, adolescenti e giovanissimi adulti un vaccino che promette di prevenire una malattia a trasmissione sessuale introduce un rischio morale: possono impegnarsi in pratiche ad alto rischio perché ritengono che sia sicuro farlo.

Con la sensazione di essere protetti, gli adolescenti possono impegnarsi in comportamenti sessuali in tenera età, che sono spesso associati ad altre attività ad alto rischio come l’uso di sostanze. Invece, potremmo indirizzare le risorse per aiutare gli adolescenti a compiere passi concreti per rendere la cura di sé una priorità in un momento in cui gli eventi e le persone intorno a loro mettono alla prova la loro autostima.

  • Incoraggiare l’influenza sociale positiva

I leader della comunità e i professionisti della sanità pubblica potrebbero investire in attività di promozione della salute, come la costruzione di centri comunitari e palestre per rendere accessibili l’attività fisica regolare e le connessioni sociali indipendentemente dal reddito familiare, consentendo a tutti gli adolescenti di costruire una solida rete sociale con valori condivisi.

I giovani adulti devono anche stabilire buone abitudini alimentari e di sonno, sviluppare un rapporto sano con l’alcol e comprendere il legame tra salute mentale e fisica.

Infine, i genitori impegnati devono essere sostenuti nel rafforzare il senso di appartenenza del figlio all’interno della propria  comunità  .

Mentre la promessa della tecnologia dei vaccini umani è allettante per prevenire le malattie e persino curare il cancro, dovremmo riflettere razionalmente sulla relazione di lunga data tra virus e umani.

Certamente, i vaccini hanno notevolmente migliorato importanti esiti pediatrici, ma i nuovi vaccini destinati a giovani adulti altrimenti sani devono essere mantenuti agli standard più rigorosi per stimare i rischi e i benefici associati.

  • La qualità e la trasparenza dei dati sono obbligatorie

Quando si considerano le prove da includere nelle analisi rischio-beneficio, occorre prestare attenzione a valutare la qualità delle revisioni sistematiche. Una recente pubblicazione ha confrontato il tasso di revisioni sistematiche sui vaccini finanziate dall’industria rispetto a quelle non finanziate dall’industria . Gli studi non finanziati dall’industria avevano un punteggio di qualità superiore rispetto a quelli finanziati dall’industria.

I funzionari della sanità pubblica dovrebbero astenersi da raccomandazioni generiche basate su dati scientifici inconsistenti e investire invece in prove solide che possano veramente chiarire a chi un vaccino offre il massimo beneficio. Gli studi clinici devono essere adeguatamente dimensionati e condotti per un periodo sufficientemente lungo da rilevare benefici e rischi. Sicuramente alcuni sottogruppi possono guadagnare valore mentre altri no.

Per proteggere il programma vaccinale degli Stati Uniti , i funzionari dell’industria e le autorità sanitarie devono:

  1. Condurre prove robuste alimentate per rilevare segnali di sicurezza,
  2. Rilasciare tempestivamente i dati anonimi e individuali di prova per l’ispezione pubblica,
  3. Sviluppare analisi rischio-benefici trasparenti e rigorose prima che vengano formulate raccomandazioni e
  4. Sradicare i mandati sui vaccini.

Le politiche etiche sui vaccini sono essenziali per incoraggiare scelte di vita che promuovano una salute mentale e fisica vibrante.

◇ Riferimenti:

Fatti STD – Papillomavirus umano (HPV) (cdc.gov)

Statistiche sul cancro associato all’HPV | Centro per la prevenzione e il controllo delle malattie

libro rosa | HPV | Epidemiologia delle malattie prevenibili da vaccino | Centro per la prevenzione e il controllo delle malattie

Trattamenti immunologici per lesioni precancerose e carcinoma della cervice uterina – PubMed (nih.gov)

Risposte immunitarie contro virus e tumori nella carcinogenesi cervicale: strategie di trattamento per evitare la fuga immunitaria indotta da HPV – PubMed (nih.gov)

Programma e dosaggio del vaccino contro l’HPV | Centro per la prevenzione e il controllo delle malattie

Vaccino ricombinante nonavalente contro il papillomavirus umano nella prevenzione | IDR (dovepress.com)

Indagine sui pediatri relativa al vaccino contro il papillomavirus umano in Giappone: atteggiamenti positivi nei confronti della vaccinazione durante il periodo di raccomandazione proattiva rifiutati – PubMed (nih.gov)

Accesso alla vaccinazione contro l’HPV in Giappone: aumentare la fiducia sociale per riconquistare la fiducia nei vaccini – PubMed (nih.gov)

Impatto dell’esitazione del vaccino HPV sul cancro cervicale in Giappone: uno studio di modellazione – PubMed (nih.gov)

La polemica sulla vaccinazione HPV in Giappone: critiche alla validità etica delle argomentazioni per la sospensione della raccomandazione proattiva – ScienceDirect

Il Giappone rilancia la sua campagna di vaccinazione contro l’HPV. Per migliaia di donne potrebbe essere troppo tardi | Scienza | AAA

Vaccinazione contro il papillomavirus umano e insufficienza ovarica prematura: un’analisi della sproporzionalità utilizzando il sistema di segnalazione degli eventi avversi del vaccino (nih.gov)

Associazione tra vaccinazione contro il papillomavirus umano e insufficienza ovarica primaria in una coorte nazionale – PubMed (nih.gov)

Tasso di incidenza nazionale ed eziologia dell’insufficienza ovarica primaria tra gli adolescenti israeliani – PubMed (nih.gov)

Benefici e rischi dei vaccini contro il papillomavirus umano (HPV): revisione sistematica con meta-analisi dei dati delle sperimentazioni dai rapporti degli studi clinici (nih.gov)

Eventi avversi tromboembolici autoimmuni, neurologici e venosi dopo l’immunizzazione di ragazze adolescenti con vaccino quadrivalente contro il papillomavirus umano in Danimarca e Svezia: studio di coorte | Il BMJ

Vaccinazione contro il papillomavirus umano delle donne adulte e rischio di malattie autoimmuni e neurologiche – Hviid – 2018 – Journal of Internal Medicine 

Vaccinazione contro il papillomavirus umano e rischio di malattie autoimmuni: un ampio studio di coorte su oltre 2 milioni di ragazze in Francia – ScienceDirect 

Mimetismo e autoimmunità dell’epitopo del papillomavirus umano: la verità molecolare della condivisione dei peptidi – FullText 

Autoimmunità nei pazienti che riferiscono complicanze a lungo termine dopo l’esposizione alla vaccinazione contro il virus del papilloma umano – ScienceDirect

Impatto ed efficacia del vaccino contro il papillomavirus umano a 12 anni dall’introduzione del vaccino negli Stati Uniti, dal 2003 al 2018 – PubMed (nih.gov)

Gli effetti del programma nazionale di vaccinazione contro l’HPV in Inghilterra, Regno Unito, sul cancro cervicale e sull’incidenza di neoplasia intraepiteliale cervicale di grado 3: uno studio osservazionale basato su registri – PubMed (nih.gov)

Il recente aumento del cancro cervicale nelle donne di età compresa tra 20 e 24 anni in Inghilterra è motivo di preoccupazione? (nih.gov)

La vaccinazione contro l’HPV previene il cancro cervicale? – PubMed (nih.gov)

Adozione dello screening cervicale: uno studio trasversale sugli atteggiamenti, i comportamenti e gli ostacoli alla partecipazione allo screening auto-segnalati tra le donne immigrate dell’Asia meridionale che vivono in Australia (nih.gov)

Immunità acquisita naturalmente contro il papillomavirus umano (HPV): perché è importante nell’era del vaccino contro l’HPV | Il giornale delle malattie infettive | Oxford Academic (oup.com)

Nessun aumento del rischio di sindrome di Guillain-Barré dopo il vaccino contro il papillomavirus umano: uno studio di serie di casi autocontrollato in Inghilterra – ScienceDirect

Nessun aumento del rischio di sindrome di Guillain-Barré dopo il vaccino contro il papillomavirus umano: uno studio di serie di casi autocontrollato in Inghilterra – ScienceDirect

Sorveglianza di sicurezza post-autorizzazione per il vaccino adiuvato da papillomavirus-16/18-AS04: più di 4 anni di esperienza nostra – PubMed (nih.gov)

Vaccini contro il papillomavirus umano e infertilità. Record epidemiologico settimanale. 2017;92(28):393–404. wer9228_2017_vol92-28.pdf (who.int)

Storia naturale dell’infezione da HPV nel corso della vita: ruolo della latenza virale (nih.gov)

Lee, SH Rilevamento del DNA del gene L1 del papillomavirus umano (HPV) possibilmente legato all’adiuvante di alluminio particolato nel vaccino HPV Gardasil. J Inorg Biochem. 2012 dicembre; 117: 85-92. 

Impatto della sponsorizzazione dell’industria sulla qualità delle revisioni sistematiche dei vaccini: un’analisi trasversale degli studi pubblicati dal 2016 al 2019 – PubMed (nih.gov)

Fatti STD – HPV e uomini (cdc.gov)

Il rapporto del CDC mostra un aumento della tristezza e dell’esposizione alla violenza tra le ragazze adolescenti e i giovani LGBQ+ | Schede informative | Sala stampa | NCHHSTP | Centro per la prevenzione e il controllo delle malattie

https://n.neurology.org/content/72/24/2132

https://jnnp.bmj.com/content/82/11/1296

https://journals.sagepub.com/doi/10.1177/1352458508096868

https://www.sciencedirect.com/science/article/pii/S0213485310700232?via%3Dihub

https://www.cmaj.ca/content/179/6/525

Traduzione italiana integrale a cura di Davide Suraci della rassegna bibliografica pubblicata su “Epoch Health” in data 2 Marzo 2023. Hazardous Ingredients of HPV Vaccines Increase Risk to Young People (Part 4)

Le Vaccinazioni Distruggono l’Immunità Naturale…

Questa è solo una piccolissima collezione degli studi che dimostrano il potere dirompente di tutte le vaccinazioni pediatriche e per adulti.

H Pylori è solitamente commensale… Ma.. https://m.jci.org/articles/view/45041

Le persone contraggono le malattie contro le quali avrebbero dovuto essere immunizzate.
https://www.ncbi.nlm.nih.gov/pubmed/1565228

Le cellule B non sono necessarie per proteggerci dalla risposta immunitaria. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359130/

I linfociti T hanno ben poco a che fare con l’immunità. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886920/

Gli anticorpi non forniscono immunità. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359130/

Sostengono che le linfe insegnino al corpo come combattere un agente patogeno, ma questo studio mostra che i reni lo fanno. http://aac.asm.org/content/51/5/1700.full

Anche i muscoli fanno parte del sistema immunitario. Si noti che il danno da vaccino comporta quasi sempre problemi muscolari. http://dmm.biologists.org/content/9/6/697

Le Vaccinazioni Distruggono l'immunità Naturale…, immagine №1

I nostri batteri intestinali modulano il nostro sistema immunitario e allenano le nostre cellule B.

http://ajcn.nutrition.org/content/74/6/833.full

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408367/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807868/

http://www.pnas.org/content/107/26/11971

Sembra che le vaccinazioni causino problemi ai linfociti B. https://jhu.pure.elsevier.com/en/publications/cutaneous-lymphoid-hyperplasia-and-marginal-zone-b-cell-lymphoma–3

Le vaccinazioni non producono anticorpi. http://www.jimmunol.org/content/168/11/5893.long

I vaccini sono contaminati. http://medcraveonline.com/IJVV/IJVV-04-00072.php https://www.ncbi.nlm.nih.gov/pubmed/14767207

I presunti agenti patogeni ci proteggono. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499065/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548235/

La teoria dei germi si è rivelata errata. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359130/

I vaccinati non sviluppano l’immunità ma i non vaccinati sì. http://mbio.asm.org/content/5/2/e01047-14.full http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0016809

Il vaccino HPV provoca un alto tasso di reazioni avverse. https://link.springer.com/article/10.1007%2Fs10067-017-3768-5 https://link.springer.com/article/10.1007%2Fs12026-016-8823-9

Maggiore tasso di mortalità nei vaccinati. http://www.sciencedirect.com/science/article/pii/S0264410X16310337

La vaccinazione distrugge la capacità di sviluppare l’immunità. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209321/ https://academic.oup.com/cid/article/54/12/1778/455098/Increased-Risk-of-Noninfluenza-Respiratory-Virus http://www.bmj.com/content/340/bmj.c1626.full

Le vaccinazioni ti rendono più suscettibile alle malattie. http://www.ajtmh.org/content/journals/10.4269/ajtmh.2008.79.787#html_fulltext

Il morbillo naturale previene le allergie, le vaccinazioni le causano. http://pediatrics.aappublications.org/content/123/3/771?sso=1&sso_redirect_count=1&nfstatus=401&nftoken=00000000-0000-0000-0000-000000000000&nfstatusdescription=ERROR%3a+No+local+token https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1114674/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094965/ https://www.ncbi.nlm.nih.gov/pubmed/19255001

La vaccinazione causa allergie. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1745117/

Il morbillo in realtà ci protegge da altri agenti patogeni. https://www.ncbi.nlm.nih.gov/pubmed/2051525

Le infezioni ci proteggono dal cancro. https://www.ncbi.nlm.nih.gov/pubmed/9824838

Il morbillo e la parotite ci proteggono dalle malattie cardiache. https://www.ncbi.nlm.nih.gov/pubmed/26122188

L’ Agenda nascosta. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138175/

Le vaccinazioni causano malattie più virulente. http://journals.plos.org/plosbiology/article?id=10.1371%2Fjournal.pbio.1002198

No, il dibattito sull’autismo da vaccino non è finito, anche alcuni inserti sui vaccini lo dimostrano perché elencano l’autismo come un evento avverso dalla vaccinazione. https://www.scribd.com/doc/220807175/142-Research-Papers-Supporting-the-Vaccine-Autism-Link

Sostengono che il virus zika causi la microencefalopatia ma non possono provarlo. https://www.sciencedaily.com/releases/2016/06/160624150813.htm

Vediamo che il glifosato è usato pesantemente nelle aree con alti tassi di microencefalopatia e ne è la causa. http://www.i-sis.org.uk/Glyphosate_Causes_Abnormal_Neuronal_Development.php

Tossine come il mercurio che è ancora utilizzato in alcuni vaccini come il vaccino antinfluenzale vengono assorbite nel cervello durante l’infezione. https://www.ncbi.nlm.nih.gov/pubmed/17888900 https://www.ncbi.nlm.nih.gov/pubmed/16327074 https://www.ncbi.nlm.nih.gov/pubmed/17888900

Le vaccinazioni non danno immunità. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC265380/ https://www.ncbi.nlm.nih.gov/pubmed/14765342 https://www.ncbi.nlm.nih.gov/pubmed/7841251 https://www.ncbi.nlm.nih.gov/pubmed/1884314 https://www.ncbi.nlm.nih.gov/pubmed/3618578 https://www.ncbi.nlm.nih.gov/pubmed/24586717 https://www.ncbi.nlm.nih.gov/pubmed/22579874 https://www.ncbi.nlm.nih.gov/pubmed/1679866 https://www.ncbi.nlm.nih.gov/pubmed/14993534 https://www.ncbi.nlm.nih.gov/pubmed/24291201 https://www.ncbi.nlm.nih.gov/pubmed/1565228 http://www.neurology.org/content/42/4/761.abstract

Il vaccino antinfluenzale ti rende più incline alle infezioni polmonari. https://www.ncbi.nlm.nih.gov/pubmed/22423139

L’immunità naturale funziona. https://www.ncbi.nlm.nih.gov/pubmed/9178461 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016809 https://academic.oup.com/jid/article/186/5/593/2191062 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016809 http://www.nejm.org/doi/full/10.1056/NEJMoa0906453#t=article https://www.eurekalert.org/pub_releases/2008-08/tmsh-so1081408.php

Immunità naturale alla rabbia.

http://www.ajtmh.org/content/journals/10.4269/ajtmh.2012.11-0689#html_fulltext

Immunità da Hib. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762004000700004

Anche il vaccino antipolio può indurre la poliomielite sebbene sia stato dichiarato che usano il virus della polio inattivato. https://www.ncbi.nlm.nih.gov/pubmed/22457288 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570794/

Il vaccino antipolio è in realtà due volte più mortale. https://www.ncbi.nlm.nih.gov/pubmed/22591873

Le vaccinazioni fanno sì che i fattori infettivi diventino più patogeni ribaltando l’equilibrio del sistema immunitario. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094965/

La minaccia dell’Ebola è stata enfatizzata. https://en.ird.fr/the-media-centre/scientific-newssheets/337-possible-natural-immunity-to-ebola

I produttori di vaccini considerano la reazione agli adiuvanti una prova che l’immunità è stata indotta ma questa non è una prova. Non dà immunità. https://www.ncbi.nlm.nih.gov/pubmed/11587808?dopt=Abstract

Tutto ciò spiega perché hanno dovuto approvare una legge per proteggere i produttori di vaccini e gli spacciatori dalla ricaduta legale dal danno che stanno facendo. https://www.gpo.gov/fdsys/pkg/USCODE-2010-title42/html/USCODE-2010-title42-chap6A-subchapXIX-part2-subparta-sec300aa-10.htm

Coloro che vaccinano devono leggere questo documento per imparare a segnalare un danno da vaccino perché la comunità medica lo spazzerà sotto il tappeto. https://www.hrsa.gov/sites/default/files/vaccinecompensation/vaccineinjurytable.pdf

L’allattamento al seno fornisce immunità a lungo termine. https://www.ncbi.nlm.nih.gov/pubmed/9892025 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541369/

Quando un bambino si allatta al seno se è malato, la madre produrrà anticorpi per il bambino. http://www.nature.com/cti/journal/v2/n4/full/cti20131a.html http://advances.nutrition.org/content/6/3/267.full.pdf+html http://jn.nutrition.org/content/138/9/1782S.full https://www.ncbi.nlm.nih.gov/pubmed/17269587

Traduzione e adattamento a cura di Davide Suraci

Soppressione immunitaria innata dalle vaccinazioni mRNA SARS-CoV-2: Il ruolo del IFN-1, mRNA vaccinale no-metilazione, degli esosomi e dei microRNA, compromissione dei processi autoriparativi del DNA. (parte seconda)

Stephanie SeneffGreg NighAnthony M. Kyriakopoulos, Peter A. McCullough

Traduzione e adattamento in lingua italiana a cura di Davide Suraci

Il Ruolo degli IFN di Tipo 1 (approfondimento)

Gli IFN di tipo I svolgono un ruolo essenziale nella lotta alle infezioni virali e le carenze nella segnalazione dell’IFN di tipo I sono state associate a scarsi risultati da COVID-19 in più studi. Questi casi sono spesso associati ad autoanticorpi contro gli IFN di tipo I. Come rivisto di seguito, gli IFN di tipo I sono stati utilizzati con un certo successo nel trattamento del COVID-19 grave, in particolare se somministrati molto presto nel processo patologico. Se, come sostenuto in precedenza, i vaccini a mRNA interferiscono con la segnalazione dell’IFN di tipo I, ciò potrebbe portare a una maggiore suscettibilità al COVID-19 nelle due settimane successive al primo vaccino, prima che sia iniziata una risposta anticorpale. Le cellule infettate da un virus rilevano la presenza della replicazione del virus attraverso una serie di recettori di riconoscimento del modello (PRR), che fungono da sentinelle che rilevano le strutture aberranti dell’RNA che spesso si formano durante la replicazione virale. Questi recettori rispondono oligomerizzando e successivamente inducendo IFN di tipo I, regolando in ultima analisi un gran numero di proteine ​​​​coinvolte nella soppressione della proliferazione virale (Janeway e Medzhitov, 2002).

Uno studio multi-autore condotto da ricercatori a Parigi, in Francia, che ha coinvolto una coorte di 50 pazienti COVID-19 con vari gradi di gravità della malattia, ha rivelato che i pazienti con malattia grave erano caratterizzati da una risposta IFN di tipo I altamente compromessa (Hadjadj et al., 2020). Questi pazienti sostanzialmente non presentavano IFN-β e bassa produzione e attività di IFN-α. Ciò era associato a una carica virale ematica persistente e a una risposta infiammatoria esacerbata, caratterizzata da alti livelli di fattore di necrosi tumorale α (TNF-α) e Il-6. Gli autori hanno proposto la terapia con IFN di tipo I come potenziale opzione terapeutica. Un documento di diversi ricercatori negli Stati Uniti ha anche identificato una risposta infiammatoria unica e inappropriata in pazienti con COVID-19 grave, caratterizzata da bassi livelli di IFN sia di tipo I che di tipo III insieme a chemochine elevate ed elevata espressione di Il-6 (Blanco- Melò et al., 2020). Gli IFN di tipo I sono stati persino proposti come opzione terapeutica per il COVID-19 grave. In un modello di criceto, i ricercatori hanno esposto i criceti alla SARS-CoV-2 e hanno indotto una risposta infiammatoria nei polmoni e un’infiammazione sistemica nei tessuti distali. Hanno scoperto che la somministrazione intranasale di IFN-α ricombinante ha comportato una riduzione della carica virale e un alleviamento dei sintomi (Hoagland et al., 2021). Uno studio di coorte retrospettivo su 446 pazienti affetti da COVID-19 ha determinato che la somministrazione precoce di IFN-α2b era associata a una ridotta mortalità intraospedaliera. Tuttavia, la terapia tardiva con IFN ha aumentato la mortalità e ritardato il recupero, rivelando che la somministrazione precoce della terapia con interferone è essenziale per una risposta favorevole (Wang et al., 2020a). Un numero sorprendente di persone ha autoanticorpi neutralizzanti contro gli IFN di tipo I, sebbene l’eziologia alla base di questo fenomeno non sia stata compresa. Uno studio che ha utilizzato la profilazione longitudinale di oltre 600.000 cellule mononucleate del sangue periferico e il sequenziamento del trascrittoma di 54 pazienti con COVID-19 e 26 controlli ha rilevato una notevole mancanza di risposte geniche stimolate dall’IFN di tipo I nelle cellule mieloidi di pazienti con malattia critica (van der Wijst et al. al., 2021).

Human Interferon – By Nevit Dilmen – Self created from PDB entry with Cn3D Data Source: https://www.ncbi.nlm.nih.gov/Structure/, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1307713

Gli autoanticorpi neutralizzanti contro gli IFN di tipo I sono stati trovati nel 19% dei pazienti con malattia critica, nel 6% dei pazienti con malattia grave e nello 0% dei pazienti con malattia moderata. Un altro studio con sede a Madrid, in Spagna, ha rivelato che il 10% dei pazienti con grave malattia da COVID-19 aveva anticorpi autoimmuni contro gli IFN di tipo I (Troya et al., 2021). Uno studio multi-autore con sede in Francia ha rilevato che la mortalità per COVID-19 era significativamente più frequente nei pazienti con autoanticorpi neutralizzanti contro l’interferone di tipo I rispetto a quelli senza anticorpi neutralizzanti (55% vs. 23%) (Chauvineau ‐ Grenier et al., 2022) . Infine, Stertz e Hale (2021) notano che, a causa di autoanticorpi o forse di polimorfismi con perdita di funzione associati ai geni del sistema dell’interferone, le carenze nella produzione di interferone sono associate a ben il 15% di tutti i casi di COVID-19 potenzialmente letali .

mRNA Vaccinale non Prevede le Strategie di Metilazione?

Le strategie di metilazione per il mantenimento cellulare sono generalmente omesse dagli mRNA del vaccino? La metilazione degli mRNA è stata evolutivamente concepita per controllare la traduzione delle trascrizioni e quindi l’espressione dei geni da parte di una complessa cascata di proteine ​​metilatrici (scrittori), de-metilatrici (cancellatori) e lettrici. La metilazione dell’adenosina è la modifica epitranscriptomica più abbondante dell’mRNA e si verifica in più siti attraverso la molecola dell’mRNA (Zaccara et al., 2019).

Una metilazione chiave dell’adenosina “N6-metiladenosina (m6A)” specificatamente nel 5′ UTR degli mRNA regola la normale fisiologia cellulare, la risposta infiammatoria e la progressione del cancro. Il ruolo e i meccanismi di m6A nelle malattie umane sono estesi ed è trattato in modo eccellente in altre revisioni complete (Yang et al., 2020; Knuckles e Bühler, 2018).

Primo tra questi, la vaccinazione molecolare SARS-CoV-2 induce condizioni di stress cellulare, come descritto dall’elevata segnalazione di NF-κB dopo la vaccinazione (Liu et al., 2021; Koo et al., 2010). In condizioni di stress cellulare, che può essere indotto da un’infezione virale o da stati patologici come il cancro, m6A media gli mRNA affinché subiscano la traduzione preferenzialmente in modo indipendente dal capside (Meyer et al., 2015). Come discusso in precedenza, questo è l’opposto dell’impatto della vaccinazione mRNA SARS-CoV-2, che spinge le cellule verso una traduzione cap-dipendente. Inoltre, in condizioni diversificate di stress cellulare, vi è un’induzione schiacciante dell’aggiunta di m6A a tutto il trascrittoma che fa sì che un numero maggiore di mRNA possieda 5’UTR arricchiti con m6A (Meyer et al., 2015).

Il fattore di inizio della traduzione eucariotica 4E (eIF4E) è la proteina legante il cappuccio iniziale dell’mRNA che dirige i ribosomi alla struttura del cappuccio degli mRNA, al fine di avviare la traduzione in proteine. La dipendenza dalla traduzione cap-dipendente degli mRNA del vaccino consumerà un surplus di disponibilità di eIF4E necessaria per tradurre un numero innaturalmente elevato di mRNA sintetici. Tuttavia, la traduzione indipendente dal limite avviene senza richiedere che eIF4E sia associato a eIF4F. La competizione per i ribosomi si sposterà verso la traduzione dei trascritti cap-indipendente, poiché gli mRNA sottoposti a traduzione cap-indipendente sono dotati, a parte i siti di ingresso dei ribosomi interni (IRES), di speciali motivi di legame che si legano a fattori che reclutano attivamente mRNA ai potenziatori traslazionali indipendenti dal cappuccio del ribosoma (CITE) (Shatsky et al., 2018). Inoltre, ciò significa anche che eIF4E, che è un potente regolatore oncogenico e modulatore della proliferazione cellulare, sosterrà le sue attività grazie a questa competizione per un periodo di tempo innaturalmente prolungato, cercando di controbilanciare la competizione tra mRNA con capside resistente nei vaccini e contenenti IRES mRNA (Kyriakopoulos e McCullough, 2021; Svitkin et al., 2005). Questo tipo di condizione si traduce in una disregolazione delle modifiche co-trascrizionali dell’mRNA m6A e si collega seriamente alle progressioni molecolari di vari tumori (Han e Choe, 2020), oltre a creare condizioni predisponenti per successive infezioni virali (Svitkin et al., 2005). Successivamente consideriamo l’impatto della glicoproteina spike SARS-CoV-2 derivata dalla vaccinazione mRNA sul sistema IFN cellulare attraverso la massiccia produzione di esosomi.

Esosomi e microRNA

Un’importante rete di comunicazione tra le cellule è costituita dalle vescicole extracellulari (EV) che vengono costantemente rilasciate da una cellula e successivamente assorbite da un’altra cellula, che potrebbe trovarsi in un organo distante. Piccole vescicole note come esosomi, formate all’interno degli endosomi, sono di dimensioni simili ai virus e vengono rilasciate attraverso l’esocitosi nello spazio extracellulare per circolare successivamente in tutto il corpo (Yoshikawa et al., 2019). Gli esosomi possono fornire una collezione diversificata di molecole biologicamente attive, tra cui mRNA, microRNA (miRNA), proteine, e lipidi (Ratajczak e Ratajczak, 2016). Durante un’infezione virale, le cellule infette secernono grandi quantità di esosomi che fungono da rete di comunicazione tra le cellule per orchestrare la risposta all’infezione (Chahar et al., 2015). In uno sforzo collaborativo di un team di ricercatori dell’Arizona e del Connecticut, è stato scoperto che le persone vaccinate con i vaccini mRNA hanno acquisito esosomi circolanti contenenti la glicoproteina spike SARS-CoV-2 entro il giorno 14 successivo alla vaccinazione (Bansal et al., 2021 ). Hanno anche scoperto che non c’erano anticorpi circolanti contro la glicoproteina spike quattordici giorni dopo il primo vaccino. Dopo il secondo vaccino, tuttavia, il numero di esosomi circolanti contenenti glicoproteina spike è aumentato fino a un fattore 12. Inoltre, gli anticorpi sono comparsi per la prima volta il giorno 14. Gli esosomi presentavano glicoproteina spike sulla loro superficie, che, secondo gli autori, indicavano una produzione di anticorpi facilitata. Quando i topi sono stati esposti a esosomi derivati ​​da persone vaccinate, hanno sviluppato anticorpi contro la glicoproteina spike. È interessante notare che, dopo l’espressione di picco, il numero di esosomi circolanti contenenti glicoproteina spike è diminuito nel tempo, di pari passo con la diminuzione del livello di anticorpi contro la glicoproteina spike.

Biogenesis of extracellular vescicles from eukaryotic cell

Gli esosomi esistono come parte del meccanismo di decadimento dell’mRNA in stretta associazione in condizioni di stress con granuli di stress (SG) e corpi P (PB) (Decker e Parker, 2012; Kothandan et al., 2020). In condizioni di traduzione indotta da vaccino-mRNA, che potrebbe essere definita “eccessiva dipendenza dalla traduzione cap-dipendente”, esiste un’evidente resistenza alla promozione e all’assemblaggio del grande complesso di decapping (Kyriakopoulos e McCullough, 2021), e quindi resistenza contro processi fisiologici di decadimento dell’mRNA (Decker e Parker, 2012). Ciò significherebbe che il destino di particolari mRNA sintetici che altrimenti sarebbero determinati dalla strategia cellulare comune per il turnover dell’mRNA che coinvolge le ribonucleinproteine ​​messaggere (mRNP) viene omesso (Borbolis e Syntichaki, 2015). Inoltre, in condizioni di eccessivo affidamento sulla traduzione cap-dipendente da parte degli mRNA sintetici nei vaccini SARS-CoV-2 (Kyriakopoulos e McCullough, 2021), molti mRNA nativi che contengono una considerevole IRES e metilazioni specifiche (m6A) nella loro struttura sceglieranno favorevolmente traduzione indipendente dal capside, che è fortemente legata ai meccanismi di controllo della qualità del decadimento dell’mRNA (Han e Choe, 2020). In questo senso, considerevoli prodotti di mRNA deadenilati così come prodotti derivati ​​dal metabolismo dell’mRNA (decadimento) sono direttamente collegati ai carichi esosomici (Borbolis e Syntichaki, 2015). Un esempio di dipendenza dalla traduzione cap-dipendente è descritto nella leucemia linfoblastica acuta a cellule T (T-ALL). A causa del target meccanicistico della rapamicina C (mTORC) -1 sovrafunzionante in T-ALL, le cellule sono guidate completamente verso la traduzione cap-dipendente (Girardi e De Keersmaecker, 2015). Una condizione analoga è descritta da Kyriakopoulos e McCullough (2021). Anche in questo stato canceroso altamente aggressivo, durante l’inibizione della traduzione cap-dipendente nelle cellule T-ALL, c’è una rapida reversione alla traduzione cap-indipendente (Girardi e De Keersmaecker, 2015). Allo stesso modo, un’infezione da picornavirus (Jang et al., 1990) spinge le cellule verso la traduzione indipendente dal capside a causa dell’inibizione dei componenti del complesso eIF4F e del pluralismo di IRES nell’RNA virale.

Negli esseri umani, vi è un’abbondanza di infezioni da picornavirus per lo più asintomatiche come il virus Safford con una sieroprevalenza superiore al 90% nei bambini e negli adulti (Zoll et al., 2009). In entrambi i casi, sia che si tratti di un evento apoptotico dovuto a una condizione simile allo stress (Rusk, 2008) o di un effetto carcinomatoso simile a un mRNA-cap-driven (De Paolis et al., 2021), i livelli di miRNA saranno aumentati a causa del aumento del funzionamento epitrascrittomico e aumento del decadimento dell’mRNA. A causa dell’elevata domanda di espressione genica, saranno elevati livelli di alcuni miRNA dovrebbe essere contenuto negli esosomi tramite corpi P (Yu et al., 2016). Inoltre, in condizioni di produzione schiacciante di glicoproteina spike SARS-CoV-2 dovuta alla vaccinazione molecolare SARS-CoV-2, ci si aspetterebbe ovviamente che una percentuale significativa di glicoproteine ​​spike intracellulari sovrabbondanti venga esportata anche tramite carichi esosomici ( Wei et al., 2021). Mishra e Banerjea (2021) hanno studiato il ruolo degli esosomi nella risposta cellulare delle cellule trasfettate con spike SARS-CoV-2. Hanno scritto nell’abstract:

“We propose that SARS-CoV-2 gene product, Spike, is able to modify the host exosomal cargo, which gets transported to distant uninfected tissues and organs and can initiate a catastrophic immune cascade within Central Nervous System (CNS).”

“Proponiamo che il prodotto del gene SARS-CoV-2, Spike, sia in grado di modificare il carico esosomico dell’ospite, che viene trasportato a tessuti e organi distanti non infetti e può avviare una cascata immunitaria catastrofica all’interno del sistema nervoso centrale (SNC).”

I loro esperimenti hanno coinvolto la crescita di cellule umane HEK293T in coltura e la loro esposizione ai plasmidi del gene spike SARS-CoV-2, che hanno indotto la sintesi della glicoproteina spike all’interno delle cellule. Hanno scoperto sperimentalmente che queste cellule rilasciavano abbondanti esosomi che ospitavano glicoproteina spike insieme a microRNA specifici. Hanno quindi raccolto gli esosomi e li hanno trasferiti in una coltura cellulare di microglia umana (le cellule immunitarie che risiedono nel cervello). Hanno dimostrato che la microglia assorbiva prontamente gli esosomi e rispondeva ai microRNA avviando una risposta infiammatoria acuta. Il ruolo della microglia nel causare la neuroinfiammazione in varie malattie virali, come il virus dell’immunodeficienza umana (HIV), il virus dell’encefalite giapponese (JEV) e la dengue, è ben consolidato.

Hanno proposto che la comunicazione cellula-cellula a lunga distanza tramite gli esosomi potrebbe essere il meccanismo mediante il quale i sintomi neurologici si manifestano nei casi gravi di COVID-19.

In un’ulteriore esplorazione, gli autori hanno identificato due microRNA che erano presenti in alte concentrazioni negli esosomi: miR-148a e miR-590. Hanno proposto un meccanismo specifico mediante il quale questi due microRNA interromperebbero in modo specifico la segnalazione dell’interferone di tipo I, attraverso la soppressione di due proteine ​​critiche che controllano il percorso: la peptidasi 33 specifica dell’ubiquitina (USP33) e l’IRF9. Gli eterodimeri STAT1 e STAT2 fosforilati richiedono IRF9 per legare gli elementi di risposta stimolati da IFN, e quindi IRF9 svolge un ruolo essenziale nella risposta di segnalazione. Gli autori hanno dimostrato sperimentalmente che la microglia esposta agli esosomi estratti dalla coltura HEK293 aveva una diminuzione del 50% nell’espressione cellulare di USP33 e una diminuzione del 60% in IRF9. Hanno inoltre scoperto che miR-148a blocca specificamente USP33 e miR-590 blocca specificamente IRF9. USP33 rimuove l’ubiquitina da IRF9 e così facendo la protegge dal degrado. Pertanto, i due microRNA cospirano insieme per interferire con IRF9, bloccando così la risposta del recettore agli interferoni di tipo I. Uno studio di de Gonzalo-Calvo et al. (2021) hanno esaminato il profilo del microRNA nel sangue dei pazienti con COVID-19 e la loro varianza quantitativa basata sulla gravità della malattia. Si è scoperto che più miRNA erano regolati verso l’alto e verso il basso. Tra questi c’era miR-148a-3p, il filamento guida precursore di miR-148a. Tuttavia, il miR-148a stesso non era tra i microRNA catalogati come eccessivi o carenti nel loro studio, né lo era il miR-590. Da questi risultati risulta che miR148a e miR-590 e i loro effetti infiammatori sono unici per la produzione di glicoproteina spike SARS-CoV-2 indotta dalla vaccinazione. Studi con traccianti hanno dimostrato che, dopo l’iniezione nel muscolo del braccio, l’mRNA nei vaccini a mRNA viene trasportato nel sistema linfatico dalle cellule immunitarie e infine si accumula nella milza in alte concentrazioni (Bahl et al., 2017). Altri studi hanno dimostrato che le cellule immunitarie stressate nei centri germinali della milza rilasciano grandi quantità di esosomi che viaggiano verso i nuclei del tronco cerebrale lungo il nervo vago (come rivisto in Seneff e Nigh (2021)). Il nervo vago è il decimo nervo cranico ed entra nel tronco encefalico vicino alla laringe.

Il superiore e ricorrente i nervi laringei sono rami del vago che innervano le strutture coinvolte nella deglutizione e nel parlare. Le lesioni in questi nervi causano la paralisi delle corde vocali associata a difficoltà a deglutire (disfagia), difficoltà a parlare (disfonia) e/o mancanza di respiro (dispnea) (Gould et al., 2019; Erman et al., 2009). Torneremo su queste patologie specifiche nella nostra revisione dei dati VAERS di seguito. Le cellule HEK293 erano originariamente derivate da colture prelevate dal rene di un feto umano diversi decenni fa e immortalate attraverso l’infezione con il DNA dell’adenovirus. Sebbene siano state estratte dal rene, le cellule mostrano attraverso il loro profilo di espressione proteica che è probabile che siano di origine neuronale (Shaw et al., 2002). Ciò suggerisce che i neuroni nel nervo vago risponderebbero in modo simile alla glicoproteina spike SARS-CoV-2. Pertanto, le prove disponibili suggeriscono fortemente che la glicoproteina spike SARS-CoV-2 prodotta in modalità endogena crei un profilo di microRNA diverso rispetto all’infezione naturale con SARS-CoV-2 e tali differenze comportano una gamma potenzialmente ampia di effetti deleteri. Un punto centrale della nostra analisi di seguito è l’importante distinzione tra l’impatto della vaccinazione rispetto all’infezione naturale sull’IFN di tipo I. Mentre la vaccinazione sopprime attivamente la sua produzione, l’infezione naturale promuove la produzione di IFN di tipo I molto presto nel ciclo della malattia. Quelli con condizioni preesistenti spesso mostrano una segnalazione IFN di tipo I compromessa, che porta a COVID-19 più grave, critico e persino fatale. Se la compromissione indotta dal vaccino viene mantenuta mentre i livelli di anticorpi diminuiscono nel tempo, ciò potrebbe portare a una situazione in cui il vaccino provoca un’espressione della malattia più grave di quanto sarebbe avvenuto in assenza del vaccino. Un’altra conseguenza prevista della soppressione dell’IFN di tipo I sarebbe la riattivazione di infezioni virali croniche preesistenti, come descritto nella Sezione 9.

Riparazione del DNA compromessa e immunità adattativa

Il sistema immunitario e il sistema di riparazione del DNA sono i due sistemi primari su cui fanno affidamento gli organismi superiori per difendersi da diverse minacce e condividono elementi comuni. La perdita di funzione delle principali proteine ​​di riparazione del DNA porta a difetti di riparazione che inibiscono la produzione di cellule B e T funzionali, con conseguente immunodeficienza. La riparazione dell’unione dell’estremità non omologa (NHEJ) svolge un ruolo fondamentale nella ricombinazione V (D) J specifica dei linfociti, che è essenziale per produrre il repertorio altamente diversificato di anticorpi delle cellule B in risposta all’esposizione all’antigene (Jiang e Mei, 2021) .

La riparazione del DNA compromessa è anche una via diretta verso il cancro.

Un articolo pubblicato da Liu et al., nel 2021 ha monitorato diversi parametri associati alla funzione immunitaria in una coorte di pazienti conducendo il sequenziamento dell’mRNA a cellula singola delle cellule mononucleari del sangue periferico (PBMC) raccolte dai pazienti prima e 28 giorni dopo la prima iniezione di un vaccino COVID-19 basato su una versione indebolita del virus (Liu et al., 2021). Sebbene questi vaccini siano diversi dai vaccini a mRNA, funzionano anche iniettando il contenuto del vaccino nel muscolo deltoide, aggirando le barriere mucose e vascolari. Gli autori hanno riscontrato un’alterazione consistente dell’espressione genica dopo la vaccinazione in molti diversi tipi di cellule immunitarie. Gli aumenti osservati nella segnalazione di NF-κB e le risposte IFN di tipo I ridotte sono stati ulteriormente confermati da test biologici. Coerentemente con altri studi, hanno scoperto che STAT2 e IRF7 erano significativamente sottoregolati 28 giorni dopo la vaccinazione, indicativi di risposte IFN di tipo I alterate. Hanno scritto: “Insieme, questi dati hanno suggerito che dopo la vaccinazione, almeno entro il giorno 28, oltre alla generazione di anticorpi neutralizzanti, il sistema immunitario delle persone, compresi quelli dei linfociti e dei monociti, era forse in uno stato più vulnerabile”. (Liu et al., 2021).

Questi autori hanno anche identificato cambiamenti inquietanti nell’espressione genica che implicherebbero una ridotta capacità di riparare il DNA. Fino al 60% dell’attività trascrizionale totale nelle cellule in crescita comporta la trascrizione del DNA ribosomiale (rDNA) per produrre RNA ribosomiale (rRNA). L’enzima che trascrive il DNA ribosomiale in RNA è l’RNA polimerasi I (Pol I). Pol I monitora anche l’integrità dell’rDNA e influenza la sopravvivenza cellulare (Kakarougkas et al., 2013). Durante la trascrizione, le RNA polimerasi (RNAP) scansionano attivamente il DNA per trovare lesioni voluminose (rotture a doppio filamento) e innescare la loro riparazione. Nelle cellule eucariotiche in crescita, la maggior parte della trascrizione comporta la sintesi dell’RNA ribosomiale da parte di Pol I. Pertanto, Pol I promuove la sopravvivenza in seguito a danni al DNA (Kakarougkas et al., 2013). Molti dei geni sottoregolati identificati da Liu et al. (2021) sono stati collegati al ciclo cellulare, al mantenimento dei telomeri e sia all’apertura del promotore che alla trascrizione di POL I, indicativi di processi di riparazione del DNA compromessi. Uno dei set di geni che sono stati soppressi era dovuto alla “deposizione di nuovo CENPA [proteina centromerica A] contenente nucleosomi al centromero”. Il CENPA di nuova sintesi è depositato nei nucleosomi al centromero durante la tarda telofase/la prima fase G1 del ciclo cellulare. Ciò indica l’arresto del ciclo cellulare nella fase G1 come caratteristica della risposta al vaccino SARS-CoV-2 inattivato. L’arresto di cellule staminali embrionali pluripotenti nella fase G1 (prima dell’inizio della replicazione) comporterebbe un auto-rinnovamento compromesso e il mantenimento della pluripotenza (Choi et al., 2013). Due proteine ​​checkpoint coinvolte in modo cruciale nella riparazione del DNA e nell’immunità adattativa sono BRCA1 e 53BP1, che facilitano sia la ricombinazione omologa (HR) che NHEJ, i due processi di riparazione primari (Zhang e Powell, 2005; Panier e Boulton, 2014). In un esperimento in vitro su cellule umane, è stato specificamente dimostrato che la glicoproteina spike a lunghezza intera SARS-CoV-2 entra nel nucleo e ostacola il reclutamento di queste due proteine ​​​​di riparazione nel sito di una rottura del doppio filamento (Jiang e Mei, 2021). Gli autori hanno riassunto le loro scoperte dicendo: “Meccanicisticamente, abbiamo scoperto che la proteina spike si localizza nel nucleo e inibisce la riparazione del danno al DNA impedendo il reclutamento della proteina chiave di riparazione del DNA BRCA1 e 53BP1 nel sito del danno”. Un altro meccanismo attraverso il quale i vaccini a mRNA potrebbero interferire con la riparazione del DNA è attraverso il miR-148. Questo microRNA ha dimostrato di sottoregolare le risorse umane nella fase G1 del ciclo cellulare (Choi et al., 2014). Come accennato in precedenza in questo documento, questo era uno dei due microRNA trovati negli esosomi rilasciati dalle cellule umane in seguito alla sintesi della glicoproteina spike SARS-CoV-2 negli esperimenti di Mishra e Banerjea (2021).

A proposito di Trombocitopenia autoimmune

I vaccini a mRNA non sono privi di rischi per la VITT (trombocitopenia trombotica immunitaria indotta da vaccino), poiché sono stati pubblicati studi di casi che documentano tali eventi, inclusa la trombosi del seno venoso cerebrale mortale e fatale (vedi conclusioni della prima parte del lavoro in oggetto) (Lee et al., 2021Akiyama et al., 2021Atoui et al., 2022Zakaria et al., 2021). Il meccanismo si ritiene che coinvolga gli anticorpi VITT che si legano al fattore piastrinico 4 (PF4) e formino immunocomplessi che inducono l’attivazione piastrinica. Le successive cascate di coagulazione causano la formazione di microcoaguli diffusi nel cervello, nei polmoni, nel fegato, nelle gambe e altrove, associati a un drastico calo della conta piastrinica (Kelton et al., 2021). La reazione al vaccino è stata descritta come molto simile alla trombocitopenia indotta da eparina (HIT), tranne per il fatto che la somministrazione di eparina non è coinvolta (Cines and Bussel, 2021). È stato dimostrato che i vaccini mRNA suscitano principalmente una risposta immunitaria immunoglobulinica G (IgG), con quantità minori di IgA indotte (Wisnewski et al., 2021) e ancor meno produzione di IgM (Danese et al., 2021). La quantità di anticorpi IgG prodotti è paragonabile alla risposta osservata nei casi gravi di COVID-19. Sono gli anticorpi IgG in complesso con l’eparina che inducono l’HIT. Si può ipotizzare che le IgG complessate con la glicoproteina spike SARS-CoV-2 e PF4 siano il complesso che induce la VITT in risposta ai vaccini a mRNA. È stato infatti dimostrato sperimentalmente che il dominio di legame del recettore (RBD) della proteina spike si lega al PF4 (Passariello et al., 2021).

https://www.nejm.org/doi/full/10.1056/NEJMoa2109908

Il meccanismo alla base di HIT è stato ben studiato, anche attraverso l’uso di modelli murini umanizzati. È interessante notare che le piastrine umane, ma non le piastrine di topo, esprimono il recettore FcγRIIA, che risponde ai complessi PF4/eparina/IgG attraverso una cascata di fosforilazione della tirosina per indurre l’attivazione piastrinica. All’attivazione, le piastrine rilasciano granuli e generano microparticelle procoagulanti. Inoltre assorbono il calcio, attivano la proteina chinasi C, si aggregano in microtrombi e lanciano una cascata di morte cellulare tramite l’attivazione della calpaina. Queste piastrine attivate rilasciano PF4 nello spazio extracellulare, favorendo un circolo vizioso, poiché questo ulteriore PF4 si lega anche all’eparina e all’anticorpo IgG per promuovere ulteriormente l’attivazione piastrinica. Pertanto, FcγRIIA è fondamentale per il processo patologico (Nevzorova et al., 2019).

Studi su topi ingegnerizzati per esprimere il recettore FcγRIIA umano hanno dimostrato che questi topi transgenici sono molto più suscettibili alla trombocitopenia rispetto alle loro controparti wild type (McKenzie et al., 1999). È stato proposto che le piastrine possano svolgere un ruolo importante nella clearance dei complessi antigene-anticorpo intrappolando l’antigene nei trombi e/o trasportandolo nella milza per la rimozione da parte delle cellule immunitarie. Le piastrine vengono ovviamente rapidamente consumate nel processo, il che si traduce quindi in un basso numero di piastrine (trombocitopenia).

Le piastrine normalmente circolano con una vita media di soli cinque-nove giorni, quindi vengono costantemente sintetizzate nel midollo osseo e eliminate nella milza. Le piastrine legate agli anticorpi, dopo l’attivazione piastrinica tramite i recettori Fcγ, migrano verso la milza dove vengono intrappolate e rimosse attraverso la fagocitosi dai macrofagi (Crow e Lazarus, 2003). Completamente un terzo delle piastrine totali del corpo si trovano nella milza. Poiché i vaccini a mRNA vengono trasportati nella milza da cellule immunitarie inizialmente attratte dal sito di iniezione nel muscolo del braccio, esiste un’enorme opportunità per il rilascio di esosomi contenenti spike-glicoproteina da parte delle cellule dendritiche nella milza che sintetizzano la proteina spike. Si può ipotizzare che l’attivazione piastrinica in seguito alla formazione di un complesso proteico P4F/IgG/spike nella milza sia parte del meccanismo che tenta di eliminare la glicoproteina spike tossica.

Abbiamo accennato in precedenza che uno dei due microRNA altamente espressi negli esosomi rilasciati dalle cellule umane esposte alla glicoproteina spike SARS-CoV-2 era miR-148a. È stato dimostrato sperimentalmente che miR-148a sopprime l’espressione di una proteina che svolge un ruolo centrale nella regolazione dell’espressione di FcγRIIA sulle piastrine. Questa proteina, chiamata T-cell ubiquitin ligand-2 (TULA-2), inibisce specificamente l’attività del recettore piastrinico Fcγ. miR-148a prende di mira l’mRNA di TULA-2 e ne riduce l’espressione. Pertanto, miR-148a, presente negli esosomi rilasciati dai macrofagi che sono costretti dal vaccino a sintetizzare la glicoproteina spike SARS-CoV-2, agisce per aumentare il rischio di trombocitopenia in risposta agli immunocomplessi formati dall’antigene della glicoproteina spike e dagli anticorpi IgG prodotti contro la glicoproteina spike.

PPAR-α, sulfatide e malattie del fegato

Come abbiamo già affermato, un esperimento di Mishra e Banerjea (2021) ha dimostrato che la glicoproteina spike SARS-CoV-2 induce il rilascio di esosomi contenenti microRNA che interferiscono specificamente con la sintesi di IRF9. In questa sezione mostreremo che una delle conseguenze della soppressione di IRF9 sarebbe la ridotta sintesi di solfatide nel fegato, mediata dal recettore nucleare attivato dal proliferatore del perossisoma recettore α (PPAR-α).

I solfatidi sono i principali sfingoglicolipidi sierici dei mammiferi che sono sintetizzati e secreti principalmente dal fegato (Lu et al., 2019). Sono gli unici sfingolipidi solfonati nel corpo. I solfatidi sono formati da un processo in due fasi che comporta la conversione della ceramide in galattocerebroside e la sua successiva solfatazione. Il solfatide è espresso sulla superficie delle piastrine, degli eritrociti e dei linfociti. I solfatidi sierici esercitano funzioni sia anticoagulanti che anti-attivazione piastrinica. L’enzima nel fegato che sintetizza il solfatide, cerebroside sulfotransferasi, è stato specificamente trovato essere indotto dall’attivazione di PPAR-α nei topi (Kimura et al., 2012). Pertanto, la ridotta espressione di PPAR-α porta alla carenza di solfatide.

I ligandi PPAR-α mostrano effetti antinfiammatori e antifibrotici, mentre la carenza di PPAR-α porta a steatosi epatica, steatoepatite, steatofibrosi e cancro al fegato (Wang et al., 2020b). Nel 2019, un team di ricercatori in Giappone ha condotto un esperimento su topi con un gene difettoso per PPAR-α (Lu et al., 2019). Questi topi, se nutriti con una dieta ricca di colesterolo, erano suscettibili all’accumulo eccessivo di trigliceridi e all’esacerbazione dell’infiammazione e dello stress ossidativo nel fegato, insieme a livelli aumentati di fattori della coagulazione. I topi hanno anche manifestato livelli ridotti di solfatidi sia nel fegato che nel siero. Gli autori hanno ipotizzato che il sovraccarico di colesterolo eserciti i suoi effetti tossici in parte aumentando la trombosi, a seguito di un metabolismo lipidico epatico anormale e di stress ossidativo. Hanno dimostrato che il PPAR-α può attenuare questi effetti tossici attraverso la regolazione trascrizionale dei fattori della coagulazione e la sovraregolazione della sintesi del solfatide, oltre ai suoi effetti nel migliorare le malattie del fegato. Hanno proposto che terapie come i fibrati volti ad attivare il PPAR-α potrebbero prevenire le malattie cardiovascolari indotte da una dieta ad alto contenuto di colesterolo.

Studi con traccianti hanno dimostrato che l’mRNA dei vaccini a mRNA migra preferenzialmente verso il fegato e la milza, raggiungendo concentrazioni più elevate rispetto a qualsiasi altro organo ( Bahl et al., 2017 ). Pertanto, esiste il potenziale per la soppressione dell’IRF9 nel fegato da parte del vaccino. IRF9 è altamente espresso negli epatociti, dove interagisce con PPAR-α, attivando i geni bersaglio PPAR-α. Uno studio sui topi knockout IRF9 ha mostrato che questi topi hanno sviluppato steatosi e insulino-resistenza epatica se esposti a una dieta ricca di grassi. Al contrario, la sovraespressione epatica di IRF9 mediata da adenovirus nei topi obesi ha migliorato la sensibilità all’insulina e migliorato la steatosi e l’infiammazione ( Wang et al., 2013 ).

Numerosi casi clinici nella letteratura di ricerca descrivono danni al fegato in seguito a vaccini a mRNA ( Zin Tun et al., 2021 ; Dumortiera, 2022 ; Mann et al., 2021 ). Un fattore plausibile che porta a questi risultati è la soppressione del PPAR-α attraverso la downregulation dell’IRF9 e successivamente la diminuzione della sintesi del solfatide nel fegato.

Sindrome di Guillain Barré e sindromi da danno neurologico

La GBS è una neuropatia infiammatoria demielinizzante acuta associata a morbilità di lunga durata e un significativo rischio di mortalità ( Cr é ange, 2000 ). La malattia comporta un attacco autoimmune ai nervi associato al rilascio di citochine pro-infiammatorie.

Il GBS è spesso associato ad autoanticorpi contro il solfatide e altri sfingolipidi ( Ilyas et al., 1991 ). Le cellule T attivate producono citochine in risposta alla presentazione dell’antigene da parte dei macrofagi e queste citochine possono indurre la produzione di autoanticorpi attraverso la diffusione dell’epitopo ( Vanderlugt e Miller, 2002 ). Gli anticorpi, a loro volta, inducono l’attivazione del complemento, che causa demielinizzazione e danno assonale, portando a gravi lesioni ai neuroni periferici ( Kuwahara e Kusunoki, 2018 ). È stato dimostrato che la glicoproteina spike SARS-CoV-2 si lega all’eparan solfato, che è un complesso ammino-zuccherino solfato simile al galattosio solfatato nel solfatide ( Kalra e Kandimalla, 2021). Pertanto, è concepibile che la glicoproteina spike si leghi anche al sulfatide e ciò potrebbe innescare una reazione immunitaria al complesso spike-glicoproteina-sulfatide.

Come descritto nella sezione precedente, la ridotta sintesi di solfatidi nel fegato dovuta alla soppressione dell’IRF9 porterà nel tempo a una carenza sistemica di solfatidi. La carenza di solfatidi può avere un impatto importante sul cervello e sul sistema nervoso. Il 20% dei galattolipidi presenti nella guaina mielinica sono solfatidi. Il solfatide è un componente importante del sistema nervoso, presente in concentrazioni particolarmente elevate nella guaina mielinica sia nel sistema nervoso periferico che in quello centrale. Le carenze di sulfatide possono portare a debolezza muscolare, tremori e atassia ( Honke, 2013 ), che sono sintomi comuni di GBS. La neuroinfiammazione cronica mediata dalla microglia e dagli astrociti nel cervello porta a drammatiche perdite di sulfatide cerebrale e le carenze cerebrali di sulfatide sono una delle principali caratteristiche della malattia di Alzheimer.Qiu et al., 2021 ). I topi con un difetto nella capacità di sintetizzare il solfatide dalla ceramide mostrano una ridotta capacità di mantenere la salute degli assoni mentre invecchiano. Nel corso del tempo, sviluppano guaine mieliniche ridondanti, non compattate e in degenerazione, nonché una struttura deteriorante nei nodi di Ranvier negli assoni, causando la perdita di una giunzione assogliale funzionalmente competente ( Marcus et al., 2006 ).

L’angiotensina II (Ang II), oltre ai suoi profondi effetti sulle malattie cardiovascolari, svolge anche un ruolo nell’infiammazione nel cervello che porta alla malattia neurodegenerativa ( Lanz. et al., 2010 ). La glicoproteina spike SARS-CoV-2 contiene un sito di clivaggio della furina unico non trovato in SARS-CoV, che consente all’enzima extracellulare furin di staccare il segmento S1 della glicoproteina spike e rilasciarlo in circolazione ( Letarov et al., 2021 ) . È stato dimostrato che S1 attraversa la barriera emato-encefalica nei topi ( Rhea et al., 2021). S1 contiene il dominio di legame del recettore che si lega ai recettori ACE2, disabilitandoli. Quando la segnalazione del ricevitore ACE2 è ridotta, la sintesi di Ang II è aumentata. I neuroni nel cervello possiedono recettori ACE2 che sarebbero suscettibili di interruzione da parte di S1 ​​rilasciato da esosomi contenenti spike-glicoproteina o cellule produttrici di spike-glicoproteina che avevano assorbito le nanoparticelle nei vaccini. Ang II migliora la segnalazione mediata da TLR4 nella microglia, inducendo l’attivazione della microglia e aumentando la produzione di specie reattive dell’ossigeno che portano al danno tissutale, all’interno del nucleo paraventricolare nel cervello ( Rodriguez-Perez et al., 2015 ).

Livelli elevati di Ang II sono un fattore causale nella neurodegenerazione del nervo ottico, causando neurite ottica, che può provocare una grave perdita irreversibile della vista ( Guo et al., 2017 ). Numerosi casi clinici hanno descritto casi di neuropatia ottica che compaiono poco dopo la vaccinazione mRNA per COVID-19 ( Maleki, 2021 ; Barone et al., 2021). Poco dopo la vaccinazione compaiono anche altre condizioni neurologiche debilitanti, in cui si sospetta una relazione causale. Un caso di studio con sede in Europa che ha monitorato i sintomi neurologici dopo la vaccinazione COVID-19 ha identificato 21 casi che si sono sviluppati entro una mediana di 11 giorni dopo la vaccinazione. I casi avevano diagnosi diverse tra cui trombosi del seno venoso cerebrale, malattie demielinizzanti del sistema nervoso, neuropatie periferiche infiammatorie, miosite, miastenia, encefalite limbica e arterite a cellule giganti ( Kaulen et al., 2021 ). Khayat-Khoei et al. (2021)descrivono una serie di casi di 7 pazienti, di età compresa tra 24 e 64 anni, che presentano malattia demielinizzante entro 21 giorni dalla prima o dalla seconda vaccinazione con mRNA. Quattro avevano una precedente storia di SM (controllata), mentre tre erano precedentemente sani.

La perdita dell’udito e l’acufene sono anche effetti collaterali ben noti di COVID-19. Un caso di studio ha coinvolto una serie di dieci pazienti COVID-19 che soffrivano di sintomi audiovestibolari come perdita dell’udito, disfunzione vestibolare e tinnito ( Jeong et al., 2021 ). Gli autori hanno dimostrato che il tessuto dell’orecchio interno umano esprime ACE2, furina e la proteasi transmembrana serina 2 (TMPRSS2), che facilita l’ingresso virale. Hanno anche dimostrato che SARS-CoV-2 può infettare specifici tipi di cellule dell’orecchio interno umano.

Un altro studio che ha valutato il potenziale del virus SARS-CoV-2 di infettare l’orecchio ha esaminato specificamente l’espressione del recettore ACE2 e degli enzimi furina e TM-PRSS2 di vari tipi di cellule nell’orecchio medio e interno dei topi. Hanno scoperto che ACE2 e furina erano “diffusamente presenti nella tromba di Eustachio, negli spazi dell’orecchio medio e nella coclea, suggerendo che questi tessuti sono suscettibili all’infezione da SARS-CoV-2”. ( Uranaka et al., 2021 ). L’acufene è positivamente associato all’ipertensione, che è indotta da livelli elevati di Ang II ( Rodrigues Figueiredo et al., 2016 ).

Il mal di testa è una reazione avversa molto comune ai vaccini mRNA COVID-19, in particolare per le persone che sono già suscettibili al mal di testa. In uno studio basato su un questionario che ha coinvolto 171 partecipanti, l’incidenza del mal di testa è risultata essere del 20,5% dopo il primo vaccino, salendo al 45,6% dopo il secondo colpo (Sekiguchi et al., 2021 ) . Un caso di studio ha descritto una donna di 37 anni che soffriva di un debilitante attacco di emicrania della durata di 11 giorni dopo il secondo vaccino mRNA Pfizer/BioNtech (Consoli et al ., 2021 ).

Gli steroidi sono spesso usati come terapia aggiuntiva per trattare l’emicrania ( Huang et al., 2013 ). Il desametasone e altri steroidi stimolano i recettori PPAR-α nel fegato attraverso il recettore degli steroidi, compensando così gli effetti della soppressione dell’IRF9 ( Lemberger et al., 1994 ). Una teoria per le origini dell’emicrania coinvolge l’elaborazione alterata dell’input sensoriale nel tronco cerebrale, principalmente nei neuroni del trigemino ( Dodick e Silberstein, 2006). Il nervo trigemino si trova in prossimità del nervo vago nel tronco encefalico, quindi gli esosomi che trasportano glicoproteine ​​a punta potrebbero facilmente raggiungerlo lungo la via vagale. La risonanza magnetica ha rivelato che i cambiamenti strutturali nel nervo trigemino che riflettono la microstruttura aberrante e la demielinizzazione sono una caratteristica delle persone che soffrono di frequenti emicranie ( Mungoven et al., 2020 ). Un potenziale fattore legato all’infezione da SARS-CoV-2 o alla vaccinazione con mRNA è un livello eccessivo di Ang II nel tronco encefalico a causa dell’inibizione della glicoproteina spike SARS-CoV-2 dei recettori ACE2. Gli ACE-inibitori e gli antagonisti del recettore Ang II sono diventati farmaci popolari per il trattamento dell’emicrania off-label ( Tronvik et al., 2003 ; Nandha e Singh, 2012). L’emicrania potrebbe quindi derivare sia dall’interruzione dei recettori ACE2 da parte della glicoproteina spike sia dalla distruzione della guaina mielinica che copre i nervi facciali critici attraverso una risposta infiammatoria della microglia e la perdita di sulfatide. La fonte di quella glicoproteina spike potrebbe essere esogena o endogena.

Paralisi di Bell

La paralisi di Bell è una comune neuropatia cranica che causa una paralisi facciale unilaterale. Anche negli studi clinici di fase III, la paralisi di Bell si è distinta, con sette casi comparsi nel braccio di trattamento rispetto a un solo caso nel gruppo placebo ( FDA, 2021a ; FDA, 2021b ). Un caso di studio riportato in letteratura ha coinvolto un uomo di 36 anni che ha sviluppato debolezza al braccio sinistro un giorno dopo la vaccinazione, progredendo in intorpidimento e formicolio al braccio e conseguenti sintomi della paralisi di Bell nei giorni successivi. Una causa comune della paralisi di Bell è la riattivazione dell’infezione da virus herpes simplex centrata attorno al ganglio genicolato ( Eviston et al., 2015 ). Questo, a sua volta, può essere causato dall’interruzione della segnalazione IFN di tipo I.

Miocardite

C’è stata una notevole attenzione da parte dei media dedicata al fatto che i vaccini COVID-19 causano miocardite e pericardite, con un aumento del rischio in particolare per gli uomini di età inferiore ai 50 anni ( Simone et al., 2021 ; Jain et al., 2021 ). È stato dimostrato che la glicoproteina spike SARS-CoV-2 danneggia i periciti cardiaci, che supportano i capillari e i cardiomiociti ( Avolio et al., 2020 ). La miocardite è associata all’attivazione piastrinica, quindi questo potrebbe essere un fattore in gioco nella risposta ai vaccini ( Weikert. et al., 2002 ). Tuttavia, un altro fattore potrebbe essere correlato agli esosomi rilasciati dai macrofagi che hanno assorbito le nanoparticelle di mRNA e i microRNA specifici trovati in quegli esosomi.

Uno studio che ha coinvolto pazienti affetti da grave malattia COVID-19 ha esaminato specificamente l’espressione dei microRNA circolanti rispetto ai pazienti affetti da influenza e ai controlli sani. Un microRNA che è stato costantemente sovraregolato in associazione con COVID-19 era il miR-155 e gli autori hanno suggerito che potrebbe essere un predittore di danno miocardico cronico e infiammazione. Al contrario, l’infezione influenzale non era associata ad una maggiore espressione di miR-155. Hanno concluso: “Il nostro studio ha identificato livelli significativamente alterati di miR [microRNA] associati al cuore nei pazienti con COVID-19, indicando una forte associazione di COVID-19 con disturbi cardiovascolari e rispettivi biomarcatori” ( Garg et al., 2021 ) .

Uno studio che ha confrontato 300 pazienti con malattie cardiovascolari con controlli sani ha mostrato un aumento statisticamente significativo dei livelli circolanti di miR-155 nei pazienti rispetto ai controlli. Inoltre, quelli con arterie più ristrette (secondo un punteggio Gensini) avevano livelli più alti rispetto a quelli con malattia minore ( Qiu e Ma, 2018 ).

È importante sottolineare che gli esosomi svolgono un ruolo nell’infiammazione in associazione con le malattie cardiache. Durante l’infarto del miocardio, il miR-155 è nettamente sovraregolato nei macrofagi nel muscolo cardiaco e rilasciato nell’ambiente extracellulare all’interno degli esosomi. Questi esosomi vengono consegnati ai fibroblasti e il miR-155 sottoregola le proteine ​​​​nei fibroblasti che proteggono dall’infiammazione e promuovono la proliferazione dei fibroblasti. La compromissione risultante porta alla rottura cardiaca ( Wang et al., 2017b ).

Abbiamo già discusso di come il segmento S1 della glicoproteina spike SARS-CoV-2 possa essere scisso dalla furina e rilasciato in circolazione. Si lega ai recettori ACE2 attraverso il suo dominio di legame del recettore (RBD) e questo inibisce la loro funzione. Poiché l’ACE2 degrada l’Ang II, la disattivazione dell’ACE2 porta direttamente alla sovraespressione dell’Ang II, aumentando ulteriormente il rischio di malattie cardiovascolari. La vasocostrizione indotta da AngII è un meccanismo indipendente per indurre un danno miocardico permanente anche quando non è presente un’ostruzione coronarica. Episodi ripetuti di costrizione improvvisa di un’arteria cardiaca dovuti all’Ang II possono alla fine portare a insufficienza cardiaca o morte improvvisa ( Gavras e Gavras, 2002 ). Sono stati descritti casi fatali di vaccinazione COVID-19 ( Choi et al., 2021 ; Verma et al., 2021).

La soppressione di ACE2 era già stata osservata negli studi sul virus SARS-CoV originale. Uno studio autoptico su pazienti che soccombono alla SARS-CoV ha rivelato un ruolo importante per l’inibizione dell’ACE2 nel promuovere il danno cardiaco. L’RNA virale SARS-CoV è stato rilevato nel 35% di 20 campioni di cuore umano sottoposti ad autopsia prelevati da pazienti deceduti. C’è stato un marcato aumento dell’infiltrazione di macrofagi associata a danno miocardico nei pazienti i cui cuori erano stati infettati da SARS-CoV. È importante sottolineare che la presenza di SARS-CoV nel cuore è stata associata a una marcata riduzione dell’espressione della proteina ACE2 ( Oudit et al., 2009 ).

Raccomando la diffusione capillare della (seconda) presente sintesi che potrete trovare in versione integrale direttamente da qui: “Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs

Traduzione e adattamento alla lingua italiana a cura di Davide Suraci. 7 Luglio 2023

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012513/

Soppressione immunitaria innata indotta dalle vaccinazioni a mRNA SARS-CoV-2

Stephanie SeneffGreg NighAnthony M. Kyriakopoulos, Peter A. McCullough

Traduzione e adattamento a cura di Davide Suraci

Introduzione

In questo documento, richiamiamo l’attenzione su tre aspetti molto importanti del profilo di sicurezza di queste vaccinazioni. Il primo è la soppressione, ampiamente documentata, dell’immunità innata principalmente attraverso la soppressione dell’IFN-α e la sua cascata di segnalazione associata. Questa soppressione avrà una vasta gamma di conseguenze tra cui, non ultima, la riattivazione di infezioni virali latenti e la ridotta capacità di combattere efficacemente future infezioni. Il secondo è la disregolazione del sistema sia per prevenire che per rilevare la trasformazione maligna geneticamente guidata all’interno delle cellule e il conseguente potenziale per la vaccinazione di promuovere tali trasformazioni. In terzo luogo, la vaccinazione con mRNA interrompe potenzialmente la comunicazione intracellulare effettuata dagli esosomi e induce le cellule che assorbono l’mRNA della glicoproteina spike a produrre alti livelli di esosomi che trasportano la glicoproteina spike, con conseguenze infiammatorie potenzialmente gravi.

Generalità

Le numerose alterazioni dell’mRNA del vaccino nascondono l’mRNA dalle difese cellulari e promuovono un’emivita biologica più lunga e un’elevata produzione di proteina spike. Tuttavia, la risposta immunitaria al vaccino è molto diversa da quella a una vera una vera infezione da SARS-CoV-2. In questo documento, presentiamo le prove che la vaccinazione induce una profonda compromissione della segnalazione dell’interferone di tipo I, che ha diverse conseguenze negative per la salute umana. Le cellule immunitarie che hanno assorbito le nanoparticelle del vaccino rilasciano in circolazione un gran numero di esosomi contenenti proteine ​​​​spike insieme a microRNA (miRNA) critici che inducono una risposta di segnalazione nelle cellule riceventi in siti distanti. Identifichiamo anche potenziali profondi disturbi nel controllo normativo della sintesi proteica e dei sistemi di controllo del cancro. Questi disturbi hanno potenzialmente un nesso causale con la malattia neurodegenerativa, la miocardite, la trombocitopenia immunitaria, la paralisi di Bell, le malattie del fegato, l’immunità adattativa compromessa, la risposta al danno del DNA compromessa e la tumorigenesi. Mostriamo prove dal database VAERS a sostegno della nostra ipotesi. Riteniamo che una valutazione completa del rapporto rischio/beneficio dei vaccini a mRNA li metta in discussione come contributori positivi alla salute pubblica.

Possibili “paths” di induzione di patologie da vaccini a mRNA.

Questo paper riassume l’attuale letteratura sull’mRNA e sui suoi effetti sulla biologia molecolare all’interno delle cellule umane. Riconosciamo che esiste un’ampia gamma di opinioni in questa fase nascente della tecnologia dell’mRNA. Dato il suo diffuso dispiegamento prima del lavoro di base su tanti dei meccanismi di cui discutiamo qui, riteniamo che il nostro lavoro sia importante per fornire un’ampia comprensione delle revisioni presenti e future relative al fiorente lavoro molecolare preclinico svolto in quest’area.

In questo articolo, viene analizzata la letteratura scientifica che suggerisce che la vaccinazione con un vaccino a mRNA avvia una serie di eventi biologici che non solo sono diversi da quelli indotti dall’infezione, ma sono in molti modi dimostrabilmente controproducenti per la competenza immunitaria sia a breve che a lungo termine e normale funzione cellulare. Queste vaccinazioni hanno ora dimostrato di sottoregolare i percorsi critici relativi alla sorveglianza del cancro, al controllo delle infezioni e all’omeostasi cellulare. Introducono nel corpo materiale genetico altamente modificato. Una prestampa ha rivelato una notevole differenza tra le caratteristiche della risposta immunitaria a un’infezione da SARS-CoV-2 rispetto alla risposta immunitaria a un vaccino mRNA contro COVID-19 (Ivanova et al., 2021).

L’analisi dell’espressione genica differenziale delle cellule dendritiche periferiche ha rivelato una drammatica sovraregolazione degli interferoni di tipo I e II (IFN) nei pazienti con COVID-19, ma non nei vaccinati.

Un’osservazione notevole che hanno fatto è stata che c’era un’espansione delle cellule staminali e progenitrici ematopoietiche circolanti (HSPC) nei pazienti COVID-19, ma questa espansione era notevolmente assente dopo la vaccinazione. Anche una sorprendente espansione dei plasmablasti circolanti osservata nei pazienti COVID-19 non è stata osservata nei vaccinati. Tutte queste osservazioni sono coerenti con l’idea che i vaccini anti-COVID-19 sopprimono attivamente la segnalazione IFN di tipo I, come discuteremo di seguito. In questo documento ci concentreremo ampiamente, anche se non esclusivamente, sulla soppressione dell’IFN di tipo I indotta dalla vaccinazione e sulla miriade di effetti a valle che ciò ha sulla relativa cascata di segnalazione.

I vaccini a mRNA prodotti da Pfizer/BioNTech e Moderna sono stati visti come un aspetto essenziale degli sforzi per controllare la diffusione di COVID-19…

I governi sono reticenti a considerare la possibilità che queste “vaccinazioni” a mRNA possano causare danni in modi inaspettati, e soprattutto che tali danni possano persino superare i benefici ottenuti nella protezione da malattie gravi.

È ora chiaro che gli anticorpi indotti dai vaccini svaniscono in appena 3-10 settimane dopo la seconda dose (Shrotri et al., 2021), tanto che alle persone viene consigliato di farsi iniezioni di richiamo a intervalli regolari (Centers for Disease Controllo e prevenzione, 2021b). È anche diventato evidente che varianti in rapida evoluzione come il ceppo Delta e ora Omicron stanno mostrando resistenza agli anticorpi indotti dai vaccini, attraverso mutazioni nella proteina spike (Yahi et al., 2021). Inoltre, è diventato chiaro che i vaccini non prevengono la trasmissione della malattia, ma si può solo affermare che riducano la gravità dei sintomi (Kampf, 2021a). Uno studio che ha confrontato i tassi di vaccinazione con i tassi di infezione da COVID-19 in 68 paesi e 2947 contee negli Stati Uniti all’inizio di settembre 2021, non ha trovato alcuna correlazione tra i due, suggerendo che questi vaccini non proteggono dalla diffusione della malattia (Subramanian e Kumar, 2947). Per quanto riguarda la gravità dei sintomi, anche questo aspetto comincia a essere messo in dubbio, come dimostra un focolaio in un ospedale israeliano che ha portato alla morte di cinque pazienti ospedalieri completamente vaccinati (Shitrit et al., 2021). Allo stesso modo, Brosh-Nissimov et al. (2021) hanno riferito che 34/152 (22%) dei pazienti completamente vaccinati tra 17 ospedali israeliani sono morti di COVID-19.

La crescente evidenza che i vaccini fanno poco per controllare la diffusione della malattia e che la loro efficacia diminuisce nel tempo rende ancora più imperativo valutare il grado in cui i vaccini potrebbero causare danni. Che le vaccinazioni con mRNA della proteina spike modificata da SARS-CoV-2 abbiano impatti biologici è fuori discussione. Qui tentiamo di distinguere quegli impatti da vaccini a mRNA da quelli derivanti dall’infezione naturale e di stabilire un quadro meccanicistico che colleghi quegli impatti biologici unici alle patologie ora associate alla vaccinazione. Riconosciamo che i collegamenti causali tra gli effetti biologici avviati dalla vaccinazione mRNA e gli esiti avversi non sono stati stabiliti nella grande maggioranza dei casi.

Il Ruolo degli IFN di Tipo 1

Gli IFN di tipo I svolgono un ruolo importante nella risposta immunitaria a molteplici fattori di stress. Infatti, hanno goduto di un valore terapeutico clinico come opzione terapeutica per una varietà di malattie e condizioni, tra cui infezioni virali, tumori solidi, disturbi mieloproliferativi, neoplasie ematopoietiche e malattie autoimmuni come la sclerosi multipla (Passegu e Ernst, 2009).

Come gruppo, gli IFN svolgono ruoli estremamente complicati e pleiotropici che sono coordinati e regolati attraverso l’attività della famiglia dei fattori regolatori IFN, o IRF (Kaur e Fang, 2020). IRF9 è più direttamente coinvolto nell’immunità antivirale e antitumorale e nella regolazione genetica (Alsamman e El-Masry, 2018; Huang et al., 2019; Zitvogel et al., 2015).

Strettamente correlate a questo sono le cellule dendritiche plasmacitoidi (pDC), un raro tipo di cellula immunitaria che circola nel sangue ma migra verso gli organi linfoidi periferici durante un’infezione virale. Rispondono a un’infezione virale aumentando nettamente la produzione di IFN di tipo I. L’IFN-α rilasciato nei linfonodi induce le cellule B a differenziarsi in plasmablasti. Successivamente, l’interleuchina-6 (Il-6) induce i plasmablasti ad evolversi in plasmacellule che secernono anticorpi (Jego et al., 2003). Pertanto, gli IFN svolgono un ruolo fondamentale sia nel controllo della proliferazione virale sia nell’induzione della produzione di anticorpi. Centrale sia per l’immunità antivirale che per quella antitumorale, l’IFN-α è prodotto da macrofagi e linfociti quando viene colpito da infezioni virali o batteriche o incontra cellule tumorali (De Andrea et al., 2002). Il suo ruolo come potente terapia antivirale è stato riconosciuto nel trattamento delle complicanze del virus dell’epatite C (Feng et al., 2012), dell’infezione da citomegalovirus (Delannoy et al., 1999), dell’infezione cronica da virus ebola attivo (Sakai et al., 1998 ), malattia infiammatoria intestinale associata a infezione da herpes virus (Ruther et al., 1998) e altri.

Alterazione del Signaling Antitumorale dell’IFN-1

La segnalazione alterata dell’IFN di tipo I è collegata a molti rischi di malattia, in particolare il cancro, poiché la segnalazione dell’IFN di tipo I sopprime la proliferazione sia dei virus che delle cellule tumorali arrestando il ciclo cellulare, in parte attraverso la sovraregolazione di p53, un gene oncosoppressore e varie cicline -inibitori della chinasi dipendenti (Musella et al., 2017; Matsuoka et al., 1998). L’IFN-α induce anche la presentazione dell’antigene di classe 1 di maggiore istocompatibilità (MHC) da parte delle cellule tumorali, facendole riconoscere più facilmente dal sistema di sorveglianza del cancro (Heise et al., 2016; Sundstedt et al., 2008). La gamma di effetti antitumorali avviati dall’espressione di IFN-α è sbalorditiva e si verifica attraverso meccanismi sia diretti che indiretti. Gli effetti diretti includono l’arresto del ciclo cellulare, l’induzione della differenziazione cellulare, l’inizio dell’apoptosi, l’attivazione di natural killer e cellule T CD8+ e altri (Schneider et al., 2014).

“Vaccini” a mRNA Non Conformi al Controllo di Qualità Cellulare

Questo studio (McKernan et al., 2021) ha dimostrato che esiste un significativo arricchimento del contenuto di GC (Guanina e Citosina) negli mRNA dei vaccini (53% in BNT162b2 e 61% in Moderna mRNA-1273) rispetto all’mRNA nativo di SARS-CoV-2 (36%). Il contenuto arricchito di GC degli mRNA è il risultato dell’ottimizzazione del codone eseguita durante lo sviluppo degli mRNA utilizzati nei vaccini SARS-CoV-2, apparentemente senza determinare l’effetto sulle strutture secondarie, in particolare la formazione del quadruplex della guanina (G quadruplex).

Non Ottimizzazione dei Codoni e Produzione di Proteine Aliene

L’ottimizzazione del codone descrive la produzione di polipeptidi e proteine ​​sintetici ottimizzati per il codone utilizzati nelle terapie biotecnologiche (come gli mRNA sintetici utilizzati per la vaccinazione SARS-CoV-2). Le assegnazioni alterate del codone all’interno del modello di mRNA aumentano notevolmente la quantità di polipeptidi e/o proteine ​​prodotte (Mauro e Chappell, 2014). La sostituzione del codone sinonimo comporta anche un cambiamento nei ruoli normativi e strutturali multifunzionali delle proteine ​​risultanti (Shabalina et al., 2013). Per questo motivo, l’ottimizzazione del codone è stata messa in guardia a causa dei suoi conseguenti cambiamenti che causano perturbazioni nella conformazione secondaria dei prodotti proteici con effetti potenzialmente devastanti sulla loro risultante immunogenicità, efficacia e funzione (Zhou et al., 2013; Agashe et al., 2013 ). In particolare, varie malattie umane sono il risultato di polimorfismi nucleotidici sinonimi (McCarthy et al., 2017).

Implicazioni Inquietanti – Compromissione dei Blocchi Protettivi Anticancro

La glicoproteina spike SARS-CoV-2 modifica la produzione di esosomi della cellula ospite. La trasfezione delle cellule con il gene della proteina spike e la successiva produzione della proteina spike SARS-CoV-2 si traduce in quelle cellule che generano esosomi contenenti microRNA che sopprimono la produzione di IRF9 mentre attivano una serie di trascrizioni geniche pro-infiammatorie (Mishra e Banerjea, 2021). Poiché questi vaccini sono specificamente progettati per indurre una produzione elevata e continua di glicoproteine ​​spike SARS-CoV-2, le implicazioni sono inquietanti. Come descritto sopra, l’inibizione di IRF9 sopprimerà TRAIL(Trans-Allegheny Interstate Line) e tutti i suoi effetti regolatori e a valle che inducono l’apoptosi. Ci si dovrebbe anche aspettare che la soppressione dell’IRF9 tramite microRNA esosomiale comprometta gli effetti protettivi contro il cancro dell’attività del gene BRCA2, che dipende da quella molecola per la sua attività come descritto sopra. I tumori associati a BRCA2 includono cancro al seno, alle tube di Falloppio e alle ovaie per le donne, cancro alla prostata e al seno per gli uomini, leucemia mieloide acuta nei bambini e altri (National Cancer Institute, 2021).

Segnalazione apoptotica indotta da TRAIL. TRAIL avvia la morte cellulare legandosi ai recettori della morte proapoptotici DR4 o DR5 che colocalizza i loro domini di morte intracellulare.

È stato anche dimostrato che la vaccinazione sopprime sia IRF7 che STAT2 (Liu et al., 2021). Ci si può aspettare che ciò interferisca con gli effetti protettivi contro il cancro di BRCA1 come descritto sopra. I tumori associati all’attività BRCA1 compromessa comprendono il cancro al seno, all’utero e alle ovaie nelle donne; cancro alla prostata e al seno negli uomini; e un modesto aumento del cancro al pancreas sia per gli uomini che per le donne (rischio di cancro e gene BRCA1, 2021).

Riattivazione della Varicella-Zoster

La segnalazione del recettore IFN di tipo I nelle cellule T CD8+ è fondamentale per la generazione di cellule effettrici e di memoria in risposta a un’infezione virale (Kolumam et al., 2005). Le cellule T CD8+ possono bloccare la riattivazione dell’infezione latente da herpes nei neuroni sensoriali (Liu et al., 2000). Se la segnalazione dell’IFN di tipo I è compromessa, come accade dopo la vaccinazione ma non dopo l’infezione naturale da SARS-CoV-2, anche la capacità delle cellule T CD8+ di tenere sotto controllo l’herpes sarebbe compromessa. Potrebbe essere questo il meccanismo al lavoro in risposta ai vaccini?

Trombocitopenia Immunitaria

La trombocitopenia immunitaria è una malattia autoimmune, in cui il sistema immunitario attacca le piastrine circolanti. La porpora trombocitopenica immunitaria (ITP) è stata associata a diverse vaccinazioni, tra cui morbillo, parotite, rosolia (MMR), epatite A, varicella, difterite, tetano, pertosse (DPT), poliomielite orale e influenza (Perricone et al., 2014). Sebbene vi sia un’ampia consapevolezza che i vaccini basati sul DNA dell’adenovirus possono causare trombocitopenia trombotica immunitaria indotta da vaccino (VITT) (Kelton et al., 2021), i vaccini a mRNA non sono privi di rischi per la VITT, poiché sono stati pubblicati casi di studio che documentano tale eventi, inclusa la trombosi del seno venoso cerebrale mortale e fatale (Lee et al., 2021; Akiyama et al., 2021; Atoui et al., 2022; Zakaria et al., 2021). Si ritiene che il meccanismo coinvolga gli anticorpi VITT che si legano al fattore piastrinico 4 (PF4) e formino immunocomplessi che inducono l’attivazione piastrinica. Le successive cascate di coagulazione causano la formazione di microcoaguli diffusi nel cervello, nei polmoni, nel fegato, nelle gambe e altrove, associati a un drastico calo della conta piastrinica (Kelton et al., 2021). La reazione al vaccino è stata descritta come molto simile alla trombocitopenia indotta da eparina (HIT), tranne per il fatto che la somministrazione di eparina non è coinvolta (Cines e Bussel, 2021). (Fine prima parte)

Raccomando la diffusione capillare della presente sintesi che potrete trovare in versione integrale direttamente da qui: “Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs

Danni Neurologici da Vaccini a mRNA…

☣️?⚠️ Del rischio di danni neurologici conseguenti alle vaccinazioni SarS-CoV-2 ne avevamo scritto oltre un anno fa da questa pagina. Adesso ne abbiamo conferma da uno studio che individua i “paths” genetico-biochimici della degenerazione. La recente scoperta dell’integrazione del genoma di SARS-CoV-2 attraverso un meccanismo che coinvolge LINE-1 o polimerasi theta solleva grande preoccupazione per quanto riguarda la possibile incorporazione duratura indesiderata di sequenze di proteine spike nel genoma umano. Inoltre, la serie di casi clinici che descrivono disturbi neurologici diagnosticati, aventi come unico fattore di causalità comune la vaccinazione con l’mRNA SARS-CoV-2, evidenzia senza dubbio la potenziale associazione dell’attivazione del retrotrasposone all’emergere di queste malattie. L’interferenza del DNA umano da parte di mRNA sintetici nei vaccini è più di una semplice possibilità teorica.

⛔️⚠️? La trascrizione inversa del codice dal vaccino COVID-19 L’mRNA è stata dimostrata in linee cellulari di epatoma umano, sebbene sia necessaria la conferma del risultato da parte di un gruppo indipendente. Poiché le loro sequenze codificate sono specifiche per il picco di proteine SARS-CoV-2 e queste possono anche essere integrate nel DNA umano, il risultante della patogenesi dovuta alla vaccinazione molecolare richiede una valutazione esplicita attraverso la ricerca sulla genotossicità. Oltre al potenziale patogenetico di DNA endogenamente codificato dalle proteine spike, abbiamo dimostrato che l’attivazione delle reti enzimatiche cellulari che svolgono questa integrazione del DNA comporta il loro potenziale patogeno distinto e peculiare. Questi rischi sono si prevede che saranno più elevati in specifiche popolazioni vulnerabili, vale a dire individui durante la fase di sviluppo (bambini) e pazienti affetti da malignità, malattie autoimmuni, malattie cardiovascolari e neurologiche, e malattie genetiche.

‼️⚠️? Riconosciamo che è speculativo suggerire che l’mRNA del vaccino potrebbe essere in grado di avviare l’ampia gamma di eventi patologici che abbiamo descritto. Tuttavia, dato il potenziale ampiamente documentato per entrambi gli RNA endogeno (retrovirale umano) ed esogeno (virale) di innescare questi eventi, delle indagini pertinenti sono urgentemente necessarie, soprattutto considerando il gran numero di individui a cui è stato somministrato uno o più prodotti a base di mRNA che codificano per la proteina spike SARS-CoV-2. Studio in versione integrale e originale: https://www.hilarispublisher.com/open-access/potential-mechanisms-for-human-genome-integration-of-genetic-code-from-sarscov2-mrna-vaccination-implications-for-diseas.pdf